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Galaxies definitely collide and merge

Colliding Galaxies NGC 4038 and NGC 4039 HST « WFPC2
PRC97-34a « ST Scl OPO « October 21, 1997 « B, Whitmore (ST Scl) and NASA




Black hole binary in a galactic nucleus

Chandra X-ray image
of NGC 6240 (Komossa et al. 2003)




Gravitational Waves by LISA

LISA can detect low-frequency gravitational waves
from super-massive black hole binaries:

sensitive to total mass (10*-107)/(1+z) M




Why try hard to find EM counterparts?

Grav. waves themselves a rich source of info on metric

— LISA sensitive to BH mass of ~(10%-107)/(1+z) Mg

Photons from counterparts: benefits for fundamental physics

— Hubble diagrams from ‘standard sirens’ (f(df/dt)"!; Schutz 1986)
— d; (z) from GWs and photons: new test of non-GR gravity

(Deffayet & Menou 2007)
— delay between arrival time of photons and gravitons:
improved limits on graviton mass (ym,c*=hf; Kocsis et al. 2008)

— frequency-dependence 1n delay: test Lorentz invariance

Revolution for astronomy and astrophysics:

— accretion physics: Eddington ratio and spectrum, as
functions of BH mass and spin, orbital parameters

— quasar/galaxy co-evolution: long-standing problem




Can we find EM counterparts?

Sky position error from LISA is poor (~0.3 deg?)

— 10%*> —=107- galaxies with LISA redshift info (i.e.: 3D)
— perhaps a unique near-Eddington quasar (Kocsis et al. 2005)

EM signature produced by merger is not understood

— hard problem, requires gas physics + GR + radiation

But ‘last parsec problem’ suggests gas needed

— without gas, orbital decay / angular momentum loss

time-scale exceeds Hubble time atr ~ 1 pc
(Begelman, Blandford, Rees 1984)

IF gas is still present at the time of GW-emitting phase

— accretion onto one or both holes (or to post-merger binary)

— modulations on orbital time-scale? post-merger shocks?
(Kocsis et al. 2006; 2008)




A Unique Quasar Counterpart?

TABLE 1
LISA MEASUREMENT ERRORS

SM/M Sp/p 6dL/dy 50

best 0.8%x10° 2x10° 2x103 0.01deg?
typical 2% 107 9x10° 4x103  0.3deg?

worst 0.8 x 1073 0.1 2x1072%  3deg?

NOTE. — Assumed SMBH binary parameters: »i =

_ 106 =
my =10°M@ and z = 1. Vecchio (2004)

Angular and' distance
localization from GW.
signal alone depends

on physical and orbital
parameters and orientatron

Kocsis, Frei, Haiman & Menou (2005)
Hughes & Holz (2005)

Angular Error: large LISA uncertainty (contains 107~ galaxies)

Distance Errors: - LISA d;(z) measurement

- Cosmological Model

- Peculiar velocity

- [Lensing-imduced d; -vanations: Az =

Az = 0.005

005001 0)2=10)5 1 0)55
at z= 0.3-1




Number of Quasars in 3D LISA Error Box
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Kocsis et al. (2005)
- Extrapolate known optical QSO LF to Mgy < 3x10'M
* Assume L/L(edd) ~ 0.3, consistent with recent obs+models

 Compute mean number in error box (20% lensing correction)
» Unique counterpart at z<1 for 4x10°Mg < Mgy S 10’ Mg
Can be extended to z=3 if BHs spin rapidly




Identify the Counterpart from Variability

AFTER THE MERGER IS COMPLETE:

(1) Gravitational recoil at coalescence can cause
strong shocks in circumbinary gas. Monitor
3D LISA error box ~months after the merger

and look for prompt transient “afterglow”
(Lippai, Frei & Haiman 2008; Corrales, MacFadyen & Haiman 2008)

BEFORE AND DURING COALESCENCE:

(2) Can real-time LISA data-stream localize
the source ~month in advance, so that
a word-wide search can be triggered for
periodic variability on the orbital timescale?

(Kocsis, Haiman, Menou & Frei 2007; Kocsis, Haiman & Menou 2008)




Cartoon Model of Binary+Gas Evolution

Gas cools and settles into a thin circumbinary disk (Barnes 2002)

Disk aligned with binary orbital plane (Bardeen & Peterson 1975)

(Ivanov et al. 1999)

Torques from binary evacuate central cavity r ~ 2a

(Artymowicz & Lubov 1994)
Binary orbit decays due to gas viscosity, cavity follows
to becomes shorter than t,, when r ~ few 100 Rqg
Soon afterwards, disk ‘decouples’, cavity cannot follow at r <100 Rg

rapid GW-driven coalescence leaves ‘punctured disk’
(Milosavljevic & Phinney 2005)




Punctured disk
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Cuadra et al. (2008)




Gravitational Recoil

Gravitational radiation produces sudden recoil

— from conservation of linear momentum, near ISCO
— kick velocity depends on mass ratio and on spin vectors
— typical v(kick) ~ few x 100 km/s (Baker et al. 2006, 2007
— maximum v(kick) ~ 3-4,000 km/s Gonzalez et al. 2007)
— directed 1n the plane if spins aligned, generally out

of the plane otherwise

What is the response of the circumbinary disk?
— can we expect prompt EM signal, within years, so
that 1t 1s useful for selection among LISA candidates?

(Lippai et al. 2008)




Kick Velocity Distribution

Tanaka & Haiman (2008) from Baker et al. (2008)
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Effect of Kick on Circumbinary Disk

Lippai, Frei & Haiman (ApJL 2008)

* Properties of disk:

— geometrically thin (cold) accretion disk, susceptible to shocks
— Inner cavity, evacuated by torques (out to ~100 Ry)

— disk gravitationally unstable beyond ~10,000 R

— v(orbit) ~ 20,000 km/s — 2,000 km/s

— 1nner disk tightly bound to binary, outer disk weakly bound
— disk mass low (Mg;~10% Mpgp): no effect on BH trajectory

 Response of pressureless (““dark matter”) disk:

— start with massless test particles on circular orbits
— add instantaneous v(kick), parallel or perpendicular to disk

— follow Kepler orbits (ellipses) for N=10° particles
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Perpendicular Kick:
Concentric Density Enhancements

(otherwise same parameters)




Expected Caustic Properties

Consider caustic formed from material with annulus AR<R
and use epicyclic approximation:

epicyclic amplitude: AR ~ (Vije/ Vorbit) X R
caustic forms at time:  t ~ [(dQ/dR)xAR]"

= [ 7= [(dQ/ dR) X (Vkick/ Vorbit) X R]_l
use dQ2/dR o« Q/R

— t~ [Q (Videk/Vorvi)] = R/Viek

propagation speed:
infall speed: ~ AR/t ~ AR/(R/viex) ~




Implications of prompt spiral caustics

* Suggests prompt “afterglow” for SMBH coalescence:

— caustic propagates outward with speed ~ vi;ci

— infall speed into caustic IS Veaustic ~ Viick>/ Vorbit

— Veaustic D€Comes supersonic beyond ~700 R (at > 25 km/s)
— gas shocks may produce strong emission (at >50 days)

 (Can speculate about properties of afterglow:
— shocked gas heated to Vghoek ~ Veaustic ~ 29 - 80 km/s
— Lisk ~ 1/2 Muisk Vshoek” / tshock
— Mgk~ 50-1,200 M5 tshock ~ 0 days - 2 years
— Lgisk~ 6 x 10* -2 x102L.q notnegligible.
— Hardens from UV to soft X-ray (opposite of GRB afterglow)




Impact of Gas Dynamics

Corrales, MacFadyen & Haiman (2009)

Sudden ‘shaking’ of disk launches prompt sound waves
Sound waves can steepen into shocks

Hydro simulation
— adaptive mesh refinement (AMR) code FLASH

— Vkick = 500 km/s
— equation of state: 1sothermal or adiabatic

— vary temperature: 5000 - 5 x10° K




Density

time = 0.000 ps
number of blocks = 7808
b
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Surface Density Enhancement (AZL)

Disk Surface Density

Corrales, MacFadyen & Haiman (2009)
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Over-density in Spiral Shocks
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Surface Density Enhancement (AZ)

O Kiso1

Kiso2
+ Kiso3
+ Kiso4
+ Kiso5
+ Kiso6

Isothermal Disks

4 day time steps
Total 4-300 days

2000 3000
Radius (Rs)

Adiabatic Disks

4000 6000
Radius (Rs)

4 Day Steps
Total 4 — 300 Days

Corrales,
MacFadyen
Haiman (2009)




Shock Propagation

Corrales, MacFadyen & Haiman (2009)
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Shocked gas fraction

Corrales, MacFadyen & Haiman (2009)

Isothermal Simulations
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Light Curve

Corrales, MacFadyen & Haiman (2009)
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Identify the Counterpart from Variability

AFTER THE MERGER IS COMPLETE:

(1) Gravitational recoil at coalescence can cause
strong shocks in circumbinary gas. Monitor
3D LISA error box ~months after the merger

and look for prompt transient “afterglow”
(Lippai, Frei & Haiman 2008; Corrales, MacFadyen & Haiman 2008)

BEFORE AND DURING COALESCENCE:

(2) Can real-time LISA data-stream localize
the source ~month in advance, so that
a word-wide search can be triggered for
periodic variability on the orbital timescale?

(Kocsis, Haiman, Menou & Frei 2007; Kocsis, Haiman & Menou 2008)




Gas Near BHs Prior to Merger

Cuadra et al. (2008)

pu .




What is the sky position error (and shape) in last weeks of merger?

* Orbital modulation of the GW signal

L G(2,9,1)
N dL
+ noise(?)

h(t) ho(t, M., i, spins)

Detector orientation: (E p. P D)
Source direction: (Ox,Dy)

Source orientation: (67 ,};)

* Amplitude modulation is periodic with fo = — < fawl(t)



(Kocsis, Haiman & Menou 2007)

* Measured GW signal can be written in an equivalent form
phtl (pit) = he(Prast, Pspinit) * ;’?II]']”[psm.y.,r:r}

e Parameters dependence decoupled 1n three groups:

pSIOV\-’ = {de Q}*
Prast = {J’M:p fz, 1 merger s (,.—"JI)ISCO},».
Pspin = {2 spin magnitudes, 4 spin angles }

* The angular piece can be further simplified

_.-_I_
I (Pstow (0),1) = JL(E}_I Z w@
J=—1 \

Time independent Orbital harmonics
angular dependence



Time dependence of localization

(HMD method + Fisher matrix: Kocsis, Haiman, Menou & Frei 2007)
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How much advance notice?

[Jook-back time when sky position' error: shrinks down to ~10 deg*

my/mo =1
20 = 3.57°
50% levels |

=
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A world-wide monitoring campaign

with wide FOV instruments
(Kocsis, Haiman & Menou 2008)

GW source localized ~2-3 weeks before merger

Monitor sources in few x deg? field

variability 24-27 mag on timescales of hours to minutes
(1-10% Lggdington for Mgy = 109"M g at z=1-2)
Correlate EM signal with GW template over 10?3 cycles

Sky position error shrinks to ~ ten arcmin in last few days

Events with favorable geometry can be 1dentified in advance




Do we have to wait for LISA?

(Haiman, Kocsis & Menou 2008)

OPTIMISTIC ASSUMPTIONS:

— binary 1s producing bright emission (~30% L_44)

— non-negligible fraction (~10%) of this emission is variable
— clearly 1dentifiable period t,, ~ t .

— orbital evolution driven by GWs below r <10* Ry

— one-to-one correspondance between BH mergers and quasars

CAN WE IDENTIFY SUCH GW-DRIVEN BINARIES ?
— GW-driven binary = periodically variable quasar

— fraction of quasars with period t,, :

8/3

( » ) ((L+2M, )\ (
19.8 weeks k 10°M ) k(1+q)2J




Time spent at each orbital separation

I.orb [M;/!i pC]
10-4 Assume:

* t,, = time-to-merger

(Newtonian approx.)

Trade-oft:

* periodicity more
common among
low-mass BHs,
but they are faint

* high-mass BHs,
are brighter, but
periodic sources are
more rare




Residence time: disk physics
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Requirements for an (optical) survey
for finding periodic variable sources
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Require:
> 5 sources @ t, <20 wk

> 100 sources @ t,, <1 yr

var—

Assume:

* 4= 0.3

*f..=0.1

*to=10"yr

» Hopkins et al. QSOLF

Conclude:

* wide survey best
to probe GW-decay
e disk physics at 1~25




Conclusions

Gravitational recoil launches prompt outward-moving
spiral shock wave in circumbinary disk — produce a
detectable transient afterglow (hardening with time?)
Advance localization possible weeks-months before
merger, to within a few square degrees, triggering
monitoring campaign with wide FOV telescopes

decaying binaries may be identifiable in a search for

periodic variability among AGN, even before LISA, utilizing

8/3)

the scaling of occurrence rate (e.g. f

var - tvar




