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1. Structure formation in the (early) universe 
           overview of standard cosmological model 
           abundance of collapsed objects at early times 
2. Formation of the First Supermassive      
    Black Holes 
          origin of the 109 M black holes powering z=6    
            quasars discovered in Sloan Digital Sky Survey 

3. Electromagnetic and Gravitational Waves  
    Signatures of Black Hole Mergers 
           finding the EM counterparts and localizing          
           SMBH binaries detected by LISA 



•  I. Cosmological Principle 
    homogeneous and isotropic  on large scales 
•  II.  Expansion: kinematics 
    expanding in a way that preserves I.  
•  III.  Expansion: dynamics 
    obeys general relativity theory 
•  IV.  Hot Big Bang 
    hot dense state, dominated by thermal radiation 
•  V.  Inflation 
    brief initial phase of ‘superluminal’ expansion (?) 



   ~ 80 years old (external galaxies, expansion)  
   ~ 40 yrs ago: CMB (hot big bang, structures) 
   ~ 10 yrs: Acceleration (dark energy [?])  

   cf. Standard Model of Particle Physics 
           open questions, puzzles are 
           much more numerous 
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•  Hubble (1929): redshift vs distance to 20 galaxies (Cepheids) 
•  Linear expansion v=H0d → Hubble length: d=c/H0 ~ 5 Gpc 



                      www.universe-review.ca 



   General quadratic distance measure: 

   Only three metrics satisfy cosmological principle 
(Friedman-Robertson-Walker metric). In spherical 
coordinates: 

    with 

   Expansion through scale factor: 
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   Evolution of FRW metric fully specified by a(t)  
   Solution follows from Einstein’s field equations 

   Cosmological principle simplifies this enormously. 
Two independent ( 00 and ii ) components yield:   
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(Friedman Eqn.) 

(Acceleration Eqn.) 



   Energy conservation 

   Applied to expanding/contracting sphere of mass M 

   Mathematically identical to Friedmann Equation, but: 

                    mass density   energy density 
                    total energy     curvature 
                    action-at-distance  geometric theory (no forces) 
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   Three unknowns:                         - need 3rd equation 
   Equation of state relates pressure vs. energy density 

   Examples: 
                cold dark matter (non-relativistic particles):  w~0 
                radiation (or mass-less particles):                 w = 1/3 
                curvature:                                                      w = -1/3 
                vacuum:                                                        w = -1 

   w<-1/3 produces acceleration: “dark energy” 

   Cosmological redshift: follows from geodesic eqn. 
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a(t),ρ(t), p(t)
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p = wρ
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p ~ a−1

λobs = λema
−1 = λem (1+ z)



   Total energy density is sum of DM, DE, CMB.  In 
general, energy-momentum conservation requires: 

   Extrapolate backward from present-day contributions   
in terms of critical density Ω=ρ/ρcrit=ρ/[3H28πG]: 

                dark energy (DE):                     w=-1         Ω~0.7         ρ ~  const       
                cold dark matter (CDM):           w ~ 0        Ω~0.3         ρ ~  a-3  
                radiation (CMB+neutrinos):      w = 1/3     Ω~10-5        ρ ~  a-4  

   Dark energy domination is relatively recent: 
          ΩDM=ΩDE at a≈(0.3/0.7)1/3≈0.75 or redshift z≈0.3  

   Radiation-DM transition at earlier redshift z≈3000  

€ 

ρ(a) = ρi(a =1)a−3(1+w )



   Friedmann equation + Acceleration equation + 
Equation of state describe global expansion of 
smooth (mean) background FRW universe 

   Gravity enhances primordial departures from 
homogeneity.                   

   Origin of primordial density fluctuations unclear      
(quantum particle pair production in vacuum?) 

   Inflation: early phase of superluminal expansion 
required to solve puzzles involving causality.  

    Common approach is to characterize density 
fluctuations at the end of this “inflationary” phase.  



   Full description of particle fields requires following full 
phase space distribution function: 

   In general, requires solving Boltzmann equations 

   Often we are interested in bulk properties, such as 
energy density, given by low-order moments: 

   Define density contrast 
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ρ(  x ,t) ≡ g d3 q 
2π( )3

∫ f (  x ,  q ,t)
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f (  x ,  q ,t)
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δ(  x ,t) ≡
ρ(  x ,t) − ρ(  x ,t)

ρ(  x ,t)



   In linear regime, it is useful to Fourier-expand density 
contrast field 

   In general, coupled evolution of δDM, δγ, δb, must be 
considered.   For formation of cosmic structures, we  
are interested mostly in δDM (baryons follow DM).  

   Power spectrum and growth function: 
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   Variance in real space: 

   In isotropic case, power spectrum and variance can 
depend only on magnitude k and not on direction 

   Power per logarithmic interval in k 
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σ 2 ≡ d lnk k 3

2π 2∫ P(k)
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Δ2(k) ≡ k 3

2π 2 P(k)



   Variance in a filter of size R: 

   Common example: spherical top-hat 

   In k-space: 

   Observations: at present, σ8Mpc~1    (M~1015M) 
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WR (
 x ) =1 if  x ≤ R

WR (
 x ) = 0 if  x > R
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3
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   Power-spectrum is “scale-invariant” if P(k)~k-3          
so that contribution to fluctuations is spread equally in 
logarithmic k-bins  

   Inflation predicts such a scale-invariant power 
spectrum, if amplitude of each linear mode δ(k) is 
evaluated at the time when λ=2π/k=λH is the size of 
horizon, 

   At fixed cosmic time t, P(k) is modified, as longer 
wavelengths enter horizon later.  
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Δ2(k) ≡ k 3

2π 2 P(k) ~ const
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a(t)0
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∫ ~ H(t)−1



   Linear perturbations to Friedmann equation (or to 
Newtonian Euler equations for a fluid with overall 
expansion): 

   Fourier modes δ(k) evolve independently 
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˙ ̇ δ i + 2H(t) ˙ δ i − cs,i
2 a−2∇2δi − 4πG ρbg, jδ j

j
∑ = 0

Hubble friction 

pressure gradients 

gravitational sourcing 
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(∇2 →−k 2)



   Depends on dominant background component  

   For DM perturbations, ignore pressure term: 

   Expansion inhibits growth. Must follow “piece-wise” 
evolution through Rad/DM/DE dominated epochs 
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˙ ̇ δ i + 2H(t) ˙ δ i − cs,i
2 a−2∇2δi − 4πG ρbg, jδ j

j
∑ = 0

€ 

[δ ~ exp(t / tdyn ) (tdyn =1/ 4πGρ ) Static]
δ ~ lna if Rad.
δ ~ a1 if DM
δ ~ a0 if DE



   For baryons, pressure term is important for large k:     
damped oscillations on scales λ < λJ (Jeans length)  

   Newtonian equation fails on scales larger than the 
horizon λ > λH     - GR predicts growth δ~a2 on these 
scales  
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   By cosmic time t, dark matter particles travel a 
distance 

   Free streaming scale depends on the time tnr when 
particle becomes non-relativistic due to decaying 
momentum  depends on particle mass mDM 

   Logarithmic correction from change in background 
evolution a(t) at transition from Rad. to DM 
domination  
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Probed by CMB Probed by LSS 



Small scales enter horizon at t< tRM  

and stall; still show P(k)~k-3 



Large scales enter horizon at t>tRM  

and have grown only since; P(k)~k-1 



Critical modes have  
 λ= 2π/k ~100 Mpc 



Effects of baryon 
oscillations visible in 
DM power spectrum  



Measurement errors 
scale with #modes 



Neutrino free-streaming: 



Bottom-up structure 
formation:  k3P(k) 
monotonically increases 



   Large scales, safely in linear regime, are best to 
study cosmology  

   For astrophysically interesting objects, we need to 
study non-linear regimes 

   Recall: σ2
R(t)~g2(t) σ2

R(t=t0).    For P(k)~kn 

   At a given time, there is a characteristic mass-scale 
of non-linearity, M*, where σM*=1.   M* grows w/ time. 
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   In general, Jeans mass: 

   Depends on evolution of background gas 
temperature Tb. At z>zcrit≈150, Compton scattering 
with CMB photons keeps Tb=TCMB ~(1+z), and 

   At z<zcrit≈150, gas decouples thermally from  CMB, 
and temperature evolves adiabatically, Tb ~(1+z)2     
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   Consider spherical top-hat perturbation in a smooth 
FRW background universe, with initial radius Ri  and 
density ρi=(1+δi)ρbg 

   Evolution of R(t) identical to that of a(t) in a denser 
FRW universe   

   Parametric solution available in DM-only universe: 
                   R(θ)=A(1-cosθ) 
                     t(θ)=B(θ-sinθ) 
    with     A=Ri (1+δi)/[2(δi- (Ωm

-1-1)] 
               B=(1+δi)/2Hi Ωm

1/2[(δi- (Ωm
-1-1)]3/2 



Overdense region 
lags behind 

Turnaround at θ=π 

Time-symmetric 
recollapse at θ=2π 

W.Hu cosmology lecture notes 



   Density evolution: 

   At turn-around, δ = 9π2/16-1 ≈ 4.6 

   Perturbation cannot collapse to a point.  DM shells 
cross; gas shocks convert infall to thermal motions. 

   Virialization must occur at rvir≈ rmax/2: 

           Epot= -2Ekin   in virial equilibrium;  Epot=GM/r  

                 Etot= Epot(rmax) = 1/2 Epot(rvir) 
                    (turnaround)     (after virialization) 

   Density contrast δvir=ρ(θ=3π/2)/ρbg(θ=2π)=18π2 ≈ 178 
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δ =
9
2
θ − sinθ( )2

1− cosθ( )3
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   End result of spherical collapse is a virialized halo 

   “NFW” density profile ρ ~ r-1 (core) -  r-3 (edge) from            
N-body simulations (Navarro, Frenk & White 1997)  

   Collapse occurs at θ=2π, when linearly extrapolated 
overdensity reaches δL=(3/5)(3/4)2/3(2π)2/3=1.686 

   Very powerful concept: combine with initial Gaussian 
random fluctuations, the abundance of nonlinear 
halos can be computed from linear theory 

   Originally by Press-Schechter – vindicated by N-body 
simulations to within factor of ~two 



   Consider initial density field, extrapolated to z=0 with 
linear theory, smoothed on mass-scale M 

   Probability distribution P(δ) of overdensity δ at a 
random point is a Gaussian with variance σ2(M) 

   Associate fraction F(>M) of mass residing in 
collapsed halos with mass M or larger with regions 
that have δ ≥ δcrit =1.686:  
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   To find space density of halos with mass M: 

   Integrates to unity as M 0 

   dN/dM  M-2     as M 0 

   dN/dM     exp(-const M2/3) as M ∞ 

   Characteristic mass defined by σM*≈δcrit close to 
nonlinear mass scale defined earlier     
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(Hu & Kravtsov 2002) 



(Mesinger, Perna and Haiman 2005) 

CDM 
2 keV WDM 
1 keV WDM 



(Mesinger, Perna and Haiman 2005) 

CDM 
2 keV WDM 
1 keV WDM 



   Difficult to produce photons to re-ionize the Universe 

   Difficult to produce z>6 quasars / galaxies 

   Difficult to produce z>8.2 Gamma Ray Bursts 

   Possible cut-off in future JWST luminosity function  



Luminosity Function 
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Barkana, 
Haiman, 
Ostriker (2001) 


