Structure Formation in the (Early) Universe

Zoltan Haiman

Columbia University

Raman Research Institute

Bangalore, India

Oct. 6, 2009

Outline of 3 Lectures

 Structure formation in the (early) universe overview of standard cosmological model abundance of collapsed objects at early times
 Formation of the First Supermassive Black Holes origin of the 10⁹ M_☉ black holes powering z=6

quasars discovered in Sloan Digital Sky Survey

3. Electromagnetic and Gravitational Waves

Signatures of Black Hole Mergers

finding the EM counterparts and localizing SMBH binaries detected by LISA

The Standard Model of Cosmology

- I. Cosmological Principle homogeneous and isotropic on large scales
- II. Expansion: kinematics expanding in a way that preserves I.
- III. Expansion: dynamics obeys general relativity theory
- IV. Hot Big Bang

hot dense state, dominated by thermal radiation

• V. Inflation

brief initial phase of 'superluminal' expansion (?)

The Standard Model: Milestones

- ~ 80 years old (external galaxies, expansion)
- ~ 40 yrs ago: CMB (hot big bang, structures)
- ~ 10 yrs: Acceleration (dark energy [?])
- cf. Standard Model of Particle Physics open questions, puzzles are much more numerous

Expansion Kinematics

- Hubble (1929): redshift vs distance to 20 galaxies (Cepheids)
- Linear expansion v=H₀d \rightarrow Hubble length: d=c/H0 \sim 5 Gpc

Distance (1pc = 3 light years)

Expansion: Metric and Comoving Coordinates

Expansion Kinematics and FRW Metric

• General quadratic distance measure:

$$ds^2 = \sum_{\mu\nu} g_{\mu\nu} dx_{\mu} dx_{\nu}$$

 Only three metrics satisfy cosmological principle (Friedman-Robertson-Walker metric). In spherical coordinates:

$$ds^{2} = c^{2} dt^{2} - a(t)^{2} \left[\frac{dr^{2}}{1 - k(r/R)^{2}} + r^{2} (d\theta^{2} + \sin^{2} \theta d\phi^{2}) \right]$$

with $k = 0, \pm 1$

• Expansion through scale factor: $H(t) = \frac{1}{a} \frac{da}{dt}$

Expansion Dynamics: GR

- Evolution of FRW metric fully specified by *a(t)*
- Solution follows from Einstein's field equations

$$G_{\mu\nu} = -8\pi G T_{\mu\nu}$$

• Cosmological principle simplifies this enormously. Two independent (00 and ii) components yield:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\rho(t) - \frac{k(c/R)^2}{a(t)^2} \quad \text{(Friedman Eqn.)}$$
$$\frac{\ddot{a}}{a} = \frac{4\pi G}{3c^2}(\rho + 3p) \quad \text{(Acceleration Eqn.)}$$

Newtonian Analog

• Energy conservation

$$E_{tot} = \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 - \frac{GMm}{r(t)} = const$$

Applied to expanding/contracting sphere of mass M

$$\left(\frac{\dot{r}}{r}\right)^2 = \frac{8\pi G}{3}\rho(t) - \frac{const}{r(t)^2}$$

- Mathematically identical to Friedmann Equation, but:
 - mass density → energy density total energy → curvature action-at-distance → geometric theory (no forces)

Closing the Equations

- Three unknowns: $a(t), \rho(t), p(t)$ need 3rd equation
- Equation of state relates pressure vs. energy density

 $p = w\rho$

• Examples:

cold dark matter (non-relativistic particles): $w \sim 0$ radiation (or mass-less particles):w = 1/3curvature:w = -1/3vacuum:w = -1

- w<-1/3 produces acceleration: "dark energy"
- Cosmological redshift: follows from geodesic eqn. $p \sim a^{-1}$ $\lambda_{obs} = \lambda_{em} a^{-1} = \lambda_{em} (1 + z)$

Solutions (for our universe)

• Total energy density is sum of DM, DE, CMB. In general, energy-momentum conservation requires:

$$\rho(a) = \rho_i(a=1)a^{-3(1+w)}$$

• Extrapolate backward from present-day contributions in terms of critical density $\Omega = \rho / \rho_{crit} = \rho / [3H^2 8\pi G]$:

dark energy (DE):	w=-1	Ω~0.7	ρ~ const
cold dark matter (CDM):	$w \sim 0$	Ω~0.3	ρ~ a⁻³
radiation (CMB+neutrinos):	w = 1/3	Ω~10 ⁻⁵	ρ~ a⁻⁴

- Dark energy domination is relatively recent:
 Ω_{DM}=Ω_{DE} at a≈(0.3/0.7)^{1/3}≈0.75 or redshift z≈0.3
- Radiation-DM transition at earlier redshift $z \approx 3000$

Growth of Inhomogeneities

- Friedmann equation + Acceleration equation + Equation of state describe global expansion of smooth (mean) background FRW universe
- Gravity enhances primordial departures from homogeneity.
- Origin of primordial density fluctuations unclear (quantum particle pair production in vacuum?)
- Inflation: early phase of superluminal expansion required to solve puzzles involving causality.
 Common approach is to characterize density fluctuations at the end of this "inflationary" phase.

• Full description of particle fields requires following full phase space distribution function:

 $f(\vec{x}, \vec{q}, t)$

- In general, requires solving Boltzmann equations
- Often we are interested in bulk properties, such as energy density, given by low-order moments:

$$\rho(\vec{x},t) \equiv g \int \frac{d^3 \vec{q}}{\left(2\pi\right)^3} f(\vec{x},\vec{q},t)$$

• Define density contrast $\delta(\vec{x},t) \equiv \frac{\rho(\vec{x},t) - \left\langle \rho(\vec{x},t) \right\rangle}{\left\langle \rho(\vec{x},t) \right\rangle}$

 In linear regime, it is useful to Fourier-expand density contrast field

$$\delta(\vec{x},t) \equiv V \int \frac{d^3 \vec{k}}{\left(2\pi\right)^3} \tilde{\delta}(\vec{k},\vec{q},t) e^{-i\vec{k}\cdot\vec{x}}$$

- In general, coupled evolution of δ_{DM} , δ_{γ} , δ_{b} , must be considered. For formation of cosmic structures, we are interested mostly in δ_{DM} (baryons follow DM).
- Power spectrum and growth function:

$$P(\vec{k},t) = \left\langle \left| \tilde{\delta}(\vec{k},t) \right|^2 \right\rangle = g^2(t) \left\langle \left| \tilde{\delta}(\vec{k},t=t_0) \right|^2 \right\rangle$$

• Variance in real space:

$$\sigma^{2} \equiv \left\langle \left| \delta(\vec{x}) \right|^{2} \right\rangle = \int \frac{d^{3}k}{\left(2\pi\right)^{3}} P(\vec{k})$$

 In isotropic case, power spectrum and variance can depend only on magnitude k and not on direction

$$\sigma^2 \equiv \int d\ln k \frac{k^3}{2\pi^2} P(k)$$

• Power per logarithmic interval in k

$$\Delta^2(k) = \frac{k^3}{2\pi^2} P(k)$$

• Variance in a filter of size R:

$$\sigma_R^2 \equiv \left\langle \left| \delta(\vec{x}) \right|^2 \right\rangle = \int \frac{d^3 \vec{k}}{\left(2\pi\right)^3} P(\vec{k}) \left| \tilde{W}_R(\vec{k}) \right|^2$$

• Common example: spherical top-hat

$$W_{R}(\vec{x}) = 1 \qquad if \qquad |\vec{x}| \le R$$
$$W_{R}(\vec{x}) = 0 \qquad if \qquad |\vec{x}| > R$$

• In *k*-space:

$$\tilde{W}_{R}(k) = \frac{3}{(kR)^{3}} \left[\sin(kR) - (kr)\cos(kr) \right]$$

• Observations: at present, $\sigma_{8Mpc} \sim 1$ (M $\sim 10^{15} M_{\odot}$)

The Initial Power Spectrum

Power-spectrum is "scale-invariant" if P(k)~k⁻³
 so that contribution to fluctuations is spread equally in logarithmic k-bins

$$\Delta^2(k) = \frac{k^3}{2\pi^2} P(k) \sim const$$

• Inflation predicts such a scale-invariant power spectrum, if amplitude of each linear mode $\delta(k)$ is evaluated at the time when $\lambda = 2\pi/k = \lambda_H$ is the size of horizon,

$$\lambda_H = \int_0^t \frac{dt'}{a(t)} \sim H(t)^{-1}$$

 At fixed cosmic time t, P(k) is modified, as longer wavelengths enter horizon later.

Dynamical evolution of inhomogeneities

 Linear perturbations to Friedmann equation (or to Newtonian Euler equations for a fluid with overall expansion):

$$\ddot{\delta}_{i} + 2H(t)\dot{\delta}_{i} - c_{s,i}^{2}a^{-2}\nabla^{2}\delta_{i} - 4\pi G\sum_{j}\rho_{bg,j}\delta_{j} = 0$$

Hubble friction
pressure gradients

gravitational sourcing

• Fourier modes $\delta(k)$ evolve independently $(\nabla^2 \rightarrow -k^2)$

Solutions

Depends on dominant background component

$$\ddot{\delta}_i + 2H(t)\dot{\delta}_i - c_{s,i}^2 a^{-2} \nabla^2 \delta_i - 4\pi G \sum_j \rho_{bg,j} \delta_j = 0$$

- For DM perturbations, ignore pressure term:
 - $\begin{bmatrix} \delta \sim \exp(t/t_{dyn}) & (t_{dyn} = 1/\sqrt{4\pi G\rho}) & Static \end{bmatrix}$ $\delta \sim \ln a \quad if \quad Rad.$ $\delta \sim a^{1} \quad if \quad DM$ $\delta \sim a^{0} \quad if \quad DE$
- Expansion inhibits growth. Must follow "piece-wise" evolution through Rad/DM/DE dominated epochs

Other Effects on Growth

$$\ddot{\delta}_i + 2H(t)\dot{\delta}_i - c_{s,i}^2 a^{-2} \nabla^2 \delta_i - 4\pi G \sum_j \rho_{bg,j} \delta_j = 0$$

• For baryons, pressure term is important for large k: damped oscillations on scales $\lambda < \lambda_{\perp}$ (Jeans length)

$$\lambda_J = 2\pi / k_J = \frac{2\pi c_s}{\sqrt{4\pi G\rho}} = \frac{\sqrt{\pi}c_s}{\sqrt{G\rho}}$$

• Newtonian equation fails on scales larger than the horizon $\lambda>\lambda_{\rm H}~$ - GR predicts growth $\delta{\sim}a^2$ on these scales

$$\lambda_H = \int_0^t \frac{dt'}{a(t)} \sim H(t)^{-1}$$

Free Streaming of DM particles

• By cosmic time *t*, dark matter particles travel a distance

$$\lambda_{FS} = \int_{0}^{t} \frac{v(t')dt'}{a(t')} = \frac{a(t)}{a(t_{nr})} 2t_{nr} \left[\frac{5}{2} + \ln\frac{a(t_{RM})}{a(t_{nr})}\right]$$

- Free streaming scale depends on the time t_{nr} when particle becomes non-relativistic due to decaying momentum → depends on particle mass m_{DM}
- Logarithmic correction from change in background evolution a(t) at transition from Rad. to DM domination

$$\lambda_{FS} = 0.5 (\Omega_{DM} h^2)^{1/3} (\frac{m_{DM}}{1 keV})^{-4/3} Mpc$$

Large scales enter horizon at $t > t_{RM}$ and have grown only since; P(k)~k⁻¹

Nonlinear regime

- Large scales, safely in linear regime, are best to study cosmology
- For astrophysically interesting objects, we need to study non-linear regimes
- Recall: $\sigma_R^2(t) \sim g^2(t) \sigma_R^2(t=t_0)$. For $P(k) \sim k^n$

$$\sigma_R^2 = \int \frac{d^3 \vec{k}}{(2\pi)^3} P(\vec{k}) \left| \tilde{W}_R(\vec{k}) \right|^2 \sim R^{-(n+3)}$$

$$\sigma_M = const \times M^{-\frac{n+3}{6}}$$

• At a given time, there is a characteristic mass-scale of non-linearity, M^* , where $\sigma_{M^*}=1$. M^* grows w/ time.

Nonlinear Scales at Early Times

Jeans length for Baryons

• In general, Jeans mass:

$$M_{J} = \frac{4\pi}{3} \left(\frac{\lambda_{J}}{2}\right)^{3} \rho = const \frac{T^{3/2}}{\rho^{1/2}}$$

 Depends on evolution of background gas temperature T_b. At z>z_{crit}≈150, Compton scattering with CMB photons keeps T_b=T_{CMB} ~(1+z), and

$$M_J = 1.35 \times 10^5 \left(\frac{\Omega_{DM} h^2}{0.15}\right)^{-1/2} M_{sun} = const.$$

• At z<z_{crit}≈150, gas decouples thermally from CMB, and temperature evolves adiabatically, T_b~(1+z)² $M_J = 4.54 \times 10^3 \left(\frac{\Omega_{DM} h^2}{0.15}\right)^{-1/2} \left(\frac{1+z}{10}\right)^{3/2}$

Spherical Collapse

- Consider spherical top-hat perturbation in a smooth FRW background universe, with initial radius R_i and density $\rho_i = (1 + \delta_i) \rho_{bg}$
- Evolution of *R(t)* identical to that of *a(t)* in a denser FRW universe
- Parametric solution available in DM-only universe: $R(\theta)=A(1-\cos\theta)$ $t(\theta)=B(\theta-\sin\theta)$ with $A=R_i(1+\delta_i)/[2(\delta_i-(\Omega_m^{-1}-1))]$

 $B = (1 + \delta_i)/2H_i \Omega_m^{1/2[} (\delta_i - (\Omega_m^{-1} - 1))]^{3/2}$

Spherical Collapse

W.Hu cosmology lecture notes

• Density evolution: $\delta = \frac{9}{2} \frac{(\theta - \sin \theta)^2}{(1 - \cos \theta)^3} - 1$

- At turn-around, $\delta = 9\pi^2/16$ -1 ≈ 4.6
- Perturbation cannot collapse to a point. DM shells cross; gas shocks convert infall to thermal motions.
- Virialization must occur at r_{vir}≈ r_{max}/2:

$$\begin{split} & \mathsf{E}_{\mathsf{pot}} = -2\mathsf{E}_{\mathsf{kin}} \text{ in virial equilibrium; } \mathsf{E}_{\mathsf{pot}} = \mathsf{GM/r} \\ & \mathsf{E}_{\mathsf{tot}} = \mathsf{E}_{\mathsf{pot}}(\mathsf{r}_{\mathsf{max}}) = 1/2 \; \mathsf{E}_{\mathsf{pot}}(\mathsf{r}_{\mathsf{vir}}) \\ & (\mathsf{turnaround}) \quad (\mathsf{after virialization}) \end{split}$$

• Density contrast $\delta_{vir} = \rho(\theta = 3\pi/2)/\rho_{bg}(\theta = 2\pi) = 18\pi^2 \approx 178$

Mass Function of Collapsed Halos

- End result of spherical collapse is a virialized halo
- "NFW" density profile ρ ~ r⁻¹ (core) r⁻³ (edge) from N-body simulations (Navarro, Frenk & White 1997)
- Collapse occurs at $\theta = 2\pi$, when linearly extrapolated overdensity reaches $\delta_1 = (3/5)(3/4)^{2/3}(2\pi)^{2/3} = 1.686$
- Very powerful concept: combine with initial Gaussian random fluctuations, the abundance of nonlinear halos can be computed from linear theory
- Originally by Press-Schechter vindicated by N-body simulations to within factor of ~two

Mass Function of Collapsed Halos

- Consider initial density field, extrapolated to z=0 with linear theory, smoothed on mass-scale M
- Probability distribution $P(\delta)$ of overdensity δ at a random point is a Gaussian with variance $\sigma^2(M)$
- Associate fraction F(>M) of mass residing in collapsed halos with mass M or larger with regions that have $\delta \ge \delta_{crit} = 1.686$:

$$F(>M) = \frac{1}{\sqrt{2\pi}\sigma_M} \int_{\delta_{crit}}^{\infty} d\delta \exp\left(-\frac{\delta^2}{2\sigma_M^2}\right)$$
$$= \frac{1}{2} erfc\left(\frac{\delta_{crit}}{\sqrt{2}\sigma_M}\right)$$

Mass Function of Collapsed Halos

• To find space density of halos with mass *M*:

$$\frac{dN}{dM} = \frac{\rho}{M} \frac{dF(>M)}{dM} = -\sqrt{\frac{2}{\pi}} \frac{\rho}{M} \frac{\delta_{crit}}{\sigma_M} \frac{d\ln\sigma_M}{dM} \exp\left(-\frac{\delta_{crit}^2}{2\sigma_M^2}\right)$$

- Integrates to unity as $M \rightarrow 0$
- $dN/dM \rightarrow M^{-2}$ as $M \rightarrow 0$
- $dN/dM \rightarrow exp(-const M^{2/3})$ as $M \rightarrow \infty$
- Characteristic mass defined by σ_{M*}≈δ_{crit} close to nonlinear mass scale defined earlier

Mass Function vs. N-body Simulations

(Hu & Kravtsov 2002)

Example Mass Functions: Thresholds

CDM 2 keV WDM 1 keV WDM

(Mesinger, Perna and Haiman 2005)

Example Mass Functions

CDM 2 keV WDM 1 keV WDM

(Mesinger, Perna and Haiman 2005)

Possible Implications of WDM for High-z

- Difficult to produce photons to re-ionize the Universe
- Difficult to produce *z*>6 quasars / galaxies
- Difficult to produce z>8.2 Gamma Ray Bursts
- Possible cut-off in future JWST luminosity function

Luminosity Function

Barkana, Haiman, Ostriker (2001)