
Lecture 3 : Elliptical galaxies II

1 Shapes of elliptical galaxies

Figure 1: Observed distribution of apparent axial ratios (Ryden, 1992, ApJ, 396,
445)

The observed ellipticity of a galaxy is a combination of its true shape and the
projection effects. The ellipticity of a galaxy, defined as ε � 1 � b

�
a, is therefore

not intrinsic. We would like to know the true shape of ellipticals, disentangling
the projection effects somehow. For ellipsoidal objects, there are in general three
axes. For example, the surfaces of constant density can be ellipsoidal, meaning,

d2

a2 � y2

b2 � z2

c2
� r2 � (1)

where a � b � c can be functions of r. An ellipsoidal is called oblate if a � b � c,
prolate if a � b � c and triaxial if a � b � c.

The distribution of the observed axial ratios, N � b � a � shows a rise from E0 to
E2 followed by a decrease. One can ask if this distribution can be explained by
random orientation of either oblate or prolate ellipsoidals. It is in general difficult
with only prolates or oblates, especially the rising part. One can fit the distribution
with a distribution of triaxials, with a : b : c � 1 : 0 	 95 : 0 	 7 (which is close to being
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oblate) with Gaussian dispersion of � 0 	 2. That ellipsoidals are in general triaxials
is supported by the isophote twists seen in many ellipticals. The position angle of
the major axis of isophotes (contours of equal surface brightness) changes with
radius, which cannot the result of projection of oblate or prolate objects. It can
occur if objects are triaxial with axial ratios changing with radius.

Figure 2: Examples of boxy and disky isophotes from Bender et al(1988).

Since the isophotes are exact ellipses, one can express them as a Fourier series,

R � φ � � a0 � σan cos � nφ � � Σbn sin � nφ � � (2)

where R � φ � is the ellipse that fits an isophote. The coefficient a4 carries informa-
tion of the shape of the isophotes, negative values make a boxy ellipse whereas
positive values make a disky isophote.

2 Theoretical interlude II : Virial theorem

If we take the first moment of the Boltzmann equation in velocity, we would get,
 ∂ f
∂t

v jd
3v �



viv j

∂ f
∂xi

d3v � ∂φ
∂xi



v j

∂ f
∂vi

d3v � 0 	 (3)

But
�
�

v j

∂ f
∂vi

d3v � 
�

v j � f � vi

� ∞ �� f � vi
� � ∞ ��� d2v �� i � 
�
�
 ∂v j

∂vi
f d3v � 0 � δi jn

�
(4)
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since f � vi
��� ∞ � � 0, which gives us,

∂
∂t

� nv̄ j � � ∂
∂xi

� n ¯viv j � � n
∂φ
∂x j

� 0 	 (5)

This is the 2nd Jeans equation (2JE). One obtains the tensor Virial theorem from
this equation by m � xk � 2JE � d3x, where m is the mass of an individual object and
mn � ρ. We get,


xk
∂ � ρv̄ j �

∂t
d3x � � 


xk
∂

∂xi
� ρ ¯viv j � d3x � 


xkρ
∂φ
∂x j

d3x 	 (6)

The last term is the potential energy tensor,

Wjk
� � 


x jρ
∂φ
∂xk

d3x � G

�


x jρ � x � ρ � x ��� � x �k � xk ��
x � � x

�
3 d3xd3x �

� � G

�


x � jρ � x � � ρ � x � � x �k � xk ��
x � � x

�
3 d3x � d3x (7)

where we have exchanged the variables x � and x, and used φ � � G � ρ � x ����
x � x � � d3x � .

Adding and diving by 2, we get,

Wjk
� � G

2


�

ρ � x � ρ � x � � � x �k � xk � � x � j � x j ��

x � � x
�
3 d3x � d3x (8)

We therefore have W jk
� Wk j. The trace of this tensor is given by,

Trace � Wjk � � � G
2


�

ρ � x � ρ � x � � Σ � x �k � xk � 2�

x � � x
�
3 d3x � d3x

� � G
2


�
 ρ � x � ρ � x � ��
x � x � � d3x � d3x
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ρφd3x � W � (9)

which is the potential energy.
Consider the second derivative (in time) of the moment of inertia tensor, I jk

�� ρx jxkd3x,

dI jk

dt
� 


dρ
dt

x jxkd3
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� � 
 ∂ � ρv̄i

∂xi
x jxkd3x

� 

ρv̄i � δi jxk � δikx j � d3x

� 

ρ � v̄ jxk � v̄kx j � d3x � (10)

where we have first used the continuity equation ( ∂n
∂t � ∂

∂xi
� nv̄i � � 0) and then the

divergence theorem ( � V g∇Fd3x � � dV gFd2s �!� V � F " ∇ � gd3x). Finally, we have,

d2

dt2 I jk
� 
$#

xk
∂
dt

� ρv̄ j � x j
∂
∂t

� ρv̄k �&% d3x � (11)

showing that the first term in equation 6

xk

∂ � ρv̄ j

∂t
d3x � d2

dt2

1
2

I jk 	 (12)

The second term can be transformed using the divergence theorem again to,

� 

xk

∂
∂xi

� ρ ¯viv j � d3x � � 

dV

xkρ ¯viv jd
2x �� i �



V

ρ ¯viv jδikd3x � 

V

ρ ¯vkv jd
3x �

(13)
which is the kinetic energy tensor, 2Kk j. This tensor can be written (with ¯vkv j

�
v̄kv̄ j � σ2

k j) as Kk j
� � 1

2 ρv̄kv̄ jd3x � � � 1
2ρσ2

k jd
3x � Tjk � Π jk. The first term de-

notes ordered motion and the second term (dispersion tensor) represents ran-
dom motion. The dispersion tensor is defined as σ2

i j
�(' � vi � v̄i � � v j � v̄ j ��) �' viv j )*� ' vi ) ' v j ) . The trace of this tensor is � 1

2 ρ � σ211 � σ222 � σ233 � d3x which
is the total kinetic energy. We therefore have the tensor virial theorem,

1
2

d2

dt2 Iik
� 2Tik � 2Πik � Wik 	 (14)

The trace, in the equilibrium case, d2

dt2
� 0, reduces to 2T � 2Π � 2K � � W ,

which is the scalar virial theorem.
Let us consider an application of the tensor virial theorem. For an axisymmet-

ric elliptical, with the z-axis as the axis of symmetry, one has Wi j
� Πi j

� Ti j
� 0

(for i +� j), and Wxx
� Wyy, Πxx

� Πyy and Txx
� Tyy. The only non-trivial equa-

tions are,
2Txx � 2Πxx � Wxx � 0;2Tzz � 2Πzxz � Wzz

� 0 	 (15)
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Figure 3: Relation of v0
�
σ0 with ellipticity (Kormendy 1982).

Which implies that,
2Txx � 2Πxx

2Tzz � 2Πzz

� Wxx

Wzz
� a

�
b (16)

If the system is rotationally flattened along z-axis, then Wzz would be smaller
(since the pairs � z � z � � would be smaller than � x � x � � ) than Wxx, and approxi-
mately depend on the ratio of the major to minor axis of the rotation ellipsoid (a
along the x-axis and b along z-axis). The last equality is very crude. For a rota-
tionally flattened system, there is only streaming motion around the z-axis, and
2Txx � 2Tyy

� � ρv̄2
φd3x � MV 2

0 , where v0 is the mass weighted rotation velocity,

and Tzz
� 0. If σ2

0 is the mass weighted mean square random velocity along line
of sight, then we also have 2Πxx

� Mσ2
0. This means that,

v0

σ0
�-, 2 � a � b �.� 2 � , � 1 � b

�
a � � b

�
a � , ε

� � 1 � ε �/	 (17)

One finds that for luminous ellipticals � v0
�
σ0 � � , ε

� � 1 � ε �10 1 and so they
are not rotationally flattened—they are flattened by velocity anisotropy, which
further points towards triaxiality. Lower luminosity ellipticals are rotationally
flattened. Interestingly, v0

�
σ0 corelates well with a4

�
a which means that disky

galaxies rotate and boxy galaxies do not.
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Figure 4: Relation of v0
�
σ0 with blue luminosity (Davies et al 1983, ApJ, 266,

41).

3 X-rays from ellipticals

Massive ellipticals often emit thermal X-rays (free-free) from a X-ray corona. The
X-ray luminosities of order 1040 � 1042 erg/s, with T � 107 K and ne � 0 	 1 � 10 � 4

per cc. The total amount hot gas implied is of order 108 � 1010 solar mass. The
implied cooling time is very short 108 � 109 yrs, so that one needs heating sources
to replenish the energy lost through cooling. SNs are probably the sources of
heat. The relation between Lx and LB has however a large scatter which is not
well understood.

X-ray observations allow one to determine the potential well of the galaxy
and therefore the mass, by assuming hydrostatic equilibrium. Assuming dp

�
dr �� GM �20 r � ρ � r2, one can write,

M �20 r � � r
kT

G
�
mu � � d lnρ

d � lnr
� d lnT

d lnr
� (18)
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Figure 5: Relation of v0
�
σ0 with a4 (Kormendy & Bender 1996).

The term in bracket is very close to 2 for most cases, and so one has,

M �20 r �3� 4 4 1011M 56� T �
107K �7� r � 10kpc �8	 (19)

4 Dark matter in dwarf galaxies

An interesting topic of research at present is the dominance of dark matter in dwarf
galaxies. Very low luminosity dwarg spheroidals seem to have a very large ratio
of M/L. In fact there is a correlation between the visual magnitude and the M/L
ratio for the Local Group dSph galaxies.
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Figure 6: X-rays from ellipticals (Forman & Jones 1985, ApJ, 293, 102)
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Figure 7: relation between blue and x-ray luminosity (Ciotti et al 1991, ApJ, 376,
380)
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Figure 8: Correlation between M
�
Lv and MV for Local Group dwarf spheroidals

(Mateo 1997, ASP Conf 116, 266)
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