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1 Introduction to general relativity

There is a common misconception that the special theory of relativity (SR) cannot
handle accelerations. This stems from the fact that SR holds in inertial frames and an
accelerated frame is noninertial. However, SR can handle accelerations. All one has
to do is to move into an instantaneously inertial frame. The space and time intervals
in SR do not depend on accelerations and only on the relative velocity. If we want to
find out what happens inside an accelerated frame, as seen by an inertial observer in
the laboratory, all we have to do is to work out the physics in a given inertial frame,
move to the instantaneously comoving frame to see what the observer in the accelerated
frame would see instantaneously. This is of course what is done in Newtonian physics
too when one discusses the physics in an accelerated frame, which basically leads to
the concept of coriolis force etc.

Now what one wants to know is how these different comoving frames fit together as
a function of space and time, and this is where general theory of relativity (GR) comes
in. In addition, general theory relativity also embodies gravity.

One cornerstone of GR is the observation that a frame under free fall in a gravia-
tional field, acts as an inertial frame (locally! – we will soon see what ‘locally’ means
here).

There is an interesting episode in Jules Verne’s science fiction ‘A trip from the
Earth to the Moon’. The story has it that a projectile containing three men and several
animals is fired from a massive cannon pointing skyward. As the projectile (which is
unpowered) goes toward Moon, its passengers walk normally inside the projectile on
the end nearer Earth. As the projectile continues, they find themselves pressed less
and less against the floor, and then reach a point when they float freely, where the
gravitational effect of Earth and Moon cancel. Later, they walk around again, but this
time on the end nearer Moon. But a dog, named Satellite, dies due to some accident
and the passengers throw its remains through a door and find that the body is floating
outside the window during the entire trip.

Now, this leads to a paradox. And this is crucial to relativity. Verne thought that the
dog should remain close to the ship since both ship and the dog independently follow
the same path through space. But why don’t the passengers float inside the spaceship
if the dog floats outside the ship during the entire trip? If we sawed the spaceship into
half, so that the passengers would be outside, would they float freely?

Well, we do know now that the passengers would float freely , at least from the
experience of the astronauts. This led Einstein to think in the following terms. From
the time of Galileo and Newton one has always thought of gravity as a force. When
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we throw a ball up in the air, it comes down in a parabola, and we say that this is
due to something called ‘gravity’. Einstein thought that if we see things in a freely
falling frame, if the floor on which we are standing, were to fall freely, then the ball
would simply go in a straight line and hit the roof. The freely falling frame is then a
more natural frame to see things from. We get the strange effects, like balls moving
in a parabola, because we are not seeing things in the right frame. So, according to
Einstein, it is as if gravity did not exist, and we could explain things if we knew how
to switch from the inertial, freely-falling frames to other ‘unnatural’ frames (like one
standing on the surface of the Earth).

Of course, if the freely falling frame were too big, then it would not remain com-
pletely inertial. Imagine Einstein’s train falling toward Earth, and we would see that
there would be relative acceleration between particles at the two end of the train, sim-
ply because Earth’s gravitational field is not homogeneous. This is what we meant by
saying that ‘locally’ a freely falling frame is an inertial frame.

But let us look at this more carefully. We just saw that because of tidal effects, the
separation of particles would change. This gives us a hint that geometry is somewhat
is linked to gravity, or gravity manifests itself in the geometry of spacetime. Although
Einstein thought of the geometry of spacetime, we can illustrate the idea in terms of
two-dimensional geometry on the surface of sphere.

Recall that in Newtonian gravity, one has the problem of identifying two kinds of
masses of an object – the interal and graviational mass. Experiments (beginning with
Galileo) show that these two masses are same for all practical purposes. This equality
needs to be added to the Newtonian system of equations; it is an extra thing.

Now consider two travellers setting out from the equator on Earth going towards
North pole. Suppose their initial separation is recorded. After travelling some distance,
one would find that the distance between them has shrunk, although they were both
going north and so were going parallel to each other. Well, if we did not know about
the curvature of the surface of Earth, we would have ascribed this strange behaviour –
the acceleration toward each other– in terms of mysterious force. We would also notice
something interesting. We would find that this ‘acceleration’ is the same if you walk,
or ride a bicycle or drive a massive car. We would conclude that this mysterious force
acts on all bodies in the same way, no matter what they are made of or how massive
they are.

It was Einstein’s idea to think of gravity in terms of the underlying ‘geometry’ of
spacetime. What is the cause of the curvature of spacetime? We will see that it is the
energy and momentum density that causes spacetime to become curved. But it is not
a one-way effect though. Spacetime also acts, in Einstein’s equation, on energy and
momentum telling a particle how to move. But that is going abit too far ahead. To
begin with we will first learn to handle vectors and tensors in SR, in flat Minkowskian
space.
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2 Vectors in Special Relativity

A typical vector would be a displacement vector, which points from one event to an-
other and its components are the coordinate differences. We will write it as,

∆
�
x

���
O

�
∆t � ∆x � ∆y � ∆z ��� (1)

By this we mean that the vector ∆
�
x has these components in the frame O. We will also

write this as,

∆
�
x

�	�
O 
 ∆xα � � (2)

The vectors transform according to the Lorentz transformation rules. We know from
SR (special relativity) that,

∆xo � ∆x0 �
1 � v2 � � v∆x1 �

1 � v2 � � (3)

etc. That is,
∆xo � Λo

β∆xβ � (4)

where

Λo
0
� 1 �

1 � v2 � � Λo
1
� � v �

1 � v2 � � Λo
2
� Λo

3
� 0 � (5)

We will write in general (for all α)

∆xα � Λα
β∆xβ � (6)

where Λα
β are a collection of 16 numbers, that is the Lorentz transformation matrix.

We have in the last equation introduced the summation convention— whenever an
index appears as a subscript and a superscript in an expression, a summation is implied
over all the values that the index can take. For indices, Greek indices will take all
values whereas Latin indices will only take the spatial values (1,2,3). In other words,

∆xα � Λα
0 ∆x0 � Λα

i ∆xi � (7)

2.1 Basis vector

Basis vectors defined in frame O as,�
e0

�	�
O

�
1 � 0 � 0 � 0 ��� �

e1

�	�
O

�
0 � 1 � 0 � 0 ��� �

e2

���
O

�
0 � 0 � 1 � 0 ��� �

e3

�	�
O

�
0 � 0 � 0 � 1 ���

(8)
Essentially,

� �
eα � β � δβ

α, which is the Kronecker delta. Any vector can be expressed in
terms of these basis vectors, as, �

A � Aα �eα � (9)

Let us see how the basis vectors transform.�
A � Aα �eα

� Aα �eα
� Λα

βAβ �eα (10)

Now, the order of numbers do not matter and also we will change the indices β � α
and α � β since they are dummy indices anyway.

AαΛβ
α
�
eβ

� Aα �eα � (11)
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Since this expression is true for an arbitrary vector Aα, we must have (for all values of
α) �

eα
� Λβ

α
�
eβ � (12)

Compare this with the transformation rule for vectors,

Aβ � Λβ
αAα � (13)

2.2 An example of a vector

Let us look at the four velocity as an example of a vector. For a uniformly moving
particle, the four velocity is defined as an vector which is tangent to the world-line, and
of length that is one unit of time in the particle’s frame. In other words, it is basically
the basis vector

�
e0 in its rest frame. For an accelerated particle too, we can use the same

definition, provided we do this in a momentarily comoving reference frame (MCRF) at
a given point in the world-line. That is,

�
U � �

e0 in the MCRF.
Suppose, a particle is moving with velocity

�
v in the x-direction of frame O. What

are its components in O. In its rest frame, we have,
�
U � �

e0. So, we have in O,

Uα � � �
e0 � α � Λα

β

� �
e0 � β � Λα

0 � (14)

This means that U0 � 1� �
1 � v2 � � U1 � v� �

1 � v2 � � U2 � U3 � 0. For small v, the spatial

components are v � 0 � 0 � which justifies the definition of the four velocity.
Suppose a particle makes an instantaneous displacement d

�
x, whose components in

the frame O are
�
dt � dx � dy � dz � . The magnitude of this displacement is � dt2 � dx2 �

dy2 � dz2 which is essentially the spacetime interval ds2 � d
�
x � d �x. For a time-like

worldline, the interval is negative, and one defines the proper time as dτ2 � � d
�
x � d �x.

Now, consider the vector d
�
x � dτ. It has a magnitude,

�
d
�
x � dτ ��� � d �x � dτ � � d

�
x � d �x � � dτ � 2 �� 1. It is also tangent to the worldline since it is a multiple of d

�
x.

Since in a momentarily comoving reference frame (MCRF), d
�
x has components�

dt � 0 � 0 � 0 � , so that the components of d
�
x � dτ has components

�
1 � 0 � 0 � 0 � . This means

that in MCRF, d
�
x � dτ � �

e0. But this is the definition of the four-velocity vector. So we
write, �

U � d
�
x

dτ
� (15)

2.3 Scalar product

Keeping in mind the importance of the interval (and its Lorentz invariance), we define
the (frame invariant) scalar product of two vectors as,�

A � �B � � A0B0
� A1B1

� A2B2
� A3B3

� AαBβ � �eα � �eβ � � AαBβηαβ � (16)

where η00
� � 1 � η11

� η22
� η33

� 1 and ηαβ
� 0 � α �� β. These are called the com-

ponents of the metric tensor in SR (in Minkowski space). We are now in a position to
define a tensor.

4



2.4 Tensors

We will define a tensor of type � 0
N � as a function of N vectors into the real numbers,

which is linear in each of its N arguments. The definition of scalar product conforms

to this rule (for a � 0
2 � tensor). The linearity essentially means that�
α
�
A ��� �B � α

� �
A � �B ��� � �

A � �
B ��� �C � �

A � �C � �
B � �C � (17)

We introduce a notation for the dot product,

g
� �
A � �B � � �

A � �B � (18)

where g is the metric tensor. The components of this tensor are,

g
� �
eα � �eβ � � ηαβ � (19)

2.5 One-forms

We would call the � 0
1 � tensors ‘one-forms’ and denote them with a ˜ overhead, as

in p̃. These tensors give a real number when supplied with a vector. That is p̃
� �
A � is a

number. The components of p̃ would be pα � p̃
� �
eα � . This would mean that,

p̃
� �
A � � p̃

�
Aα �eα � � Aα p̃

� �
eα � � Aα pα � (20)

Notice that all the terms here have plus signs —this is an example of contraction.
Let us look at the transformation of one-forms.

pβ
� p̃

� �
eβ � � p̃

�
Λα

β
�
eα � � Λα

β pα � (21)

This means that, pβ
� Λα

β
pα. Compare this with the transformation rule of basis vec-

tors, eβ
� Λα

β
eα.

This also ensures the frame invariance of Aα pα. Remember that (Schutz p.43) for
Lorentz transformation, Λα

βΛµ
α
� δµ

β. So,

Aα pα
� �

Λα
β Aβ � � Λµ

α pµ � � δµ
βAβpµ

� Aβ pβ � (22)

We can define the basis one-forms in this way:p̃ � pα
�̃
w � α. But since

pαAα � p̃
� �
A � � pαw̃α � �A � � pαw̃α � Aβ �eβ � � pαAβw̃α � �eβ ��� (23)

so we must have (for the invariance of scalar product), as the β-th component of the
α-th basis one-form,

w̃α � �eβ � � δα
β � (24)

That is, the components of w̃0 in the frame O are
�
1 � 0 � 0 � 0 � and so on.

Historically, vectors and one-forms have been called contravariant and covariant
vectors. The transformation rule of one-forms is the same as that of the basis vectors,
and this behaviour of varying with the basis vectors, gave one-forms the name covariant
vectors. They form the dual space of vectors and one-forms. This in similar to ‘bra’
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and ‘ket’ in the Hilbert space, where for inner product of two function ψ
�
x0 and φ

�
x �

one needed � ψ � � x � φ � x � d3x.
There is a convenient way of visualising one-forms. One-forms can be thought

of as a series of surfaces. The magnitude would depend on the spacing between the
surfaces—small magnitude for larger spacings. When a one-form acts on a vector, the
resulting number is the number of surfaces pierced by the vector.

That this is consistent with what we have done can be realised easily if we look
at the gradient carefully. Suppose we label (parametrize) the world-line by the proper
time τ. Suppose φ

� �
x � is a scalar field. Then its rate of change along the curve is,

dφ
dτ

� ∂φ
∂t

dt
dτ

� ∂φ
∂x

dx
dτ

� ∂φ
∂y

dy
dτ

� ∂φ
∂z

dz
dτ� ∂φ

∂t
U t � ∂φ

∂x
Ux � ∂φ

∂y
Uy � ∂φ

∂z
U z � (25)

Notice that this is linear in
�
U . This means that we can think of a one-form,

d̃φ
�	�
O

� ∂φ
∂t
� ∂φ
∂x

� ∂φ
∂y

� ∂φ
∂z
��� (26)

which when supplied with the vector
�
U , produces the number dφ

dτ , the rate of change of
φ on the curve whose tangent is

�
U .

The concept of the gradient as a one-form is consistent with the picture we had
drawn earlier. In a topographical map, think of one-forms as the contours of constant
elevation. Then the change of height as you go in a direction (a vector) is given by the
action of the one-form on the vector.

It follows from the definition of the metric tensor that g
� �
V ��� is a one-form. Sup-

pose we call it Ṽ
� � . Then what are its components?

Vα
� Ṽ

� �
eα � � �

V � �eα
� �

eα � �V � �
eα � � V β �eβ � � � �

eα � �eβ � V β � ηαβV β � (27)

So that, we have,
Vα

� ηαβV β � (28)

This gives us a mechanism for lowering and raising the indices of tensors.
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3 Tensors in polar coordinates

As a prelude to working with curvilinear coordinates, let us work out the properties of
tensors in a familiar coordinate, say, the polar coordinates. So, for now we wouldn’t
talk about SR and will be talking of Euclidean space, and the transformation between
Cartesian and the polar coordinates. Here we have,

r � 
x2 � y2 x � r cosθ � (29)

θ � arctan
y
x

y � r sinθ (30)

We also have for infinitesimally small increments,

∆r � ∂r
∂x

∆x � ∂r
∂y

∆y � x
r

∆x � y
r

∆y � cosθ∆x � sinθ∆y � (31)

And similarly,

∆θ � � y
r2 ∆x � x

r2 ∆y � � 1
r

sinθ∆x � 1
r

cosθ∆y � (32)

In general, if we define a coordinate system (with respect to the Cartesian),

ξ � ξ
�
x � y � ∆ξ � ∂ξ

∂x
∆x � ∂ξ

∂y
∆y (33)

η � η
�
x � y � ∆η � ∂η

∂x
∆x � ∂η

∂y
∆y (34)

The requirement that it is a ‘good’ coordinate system, that is, ∆x � ∆y � 0 if ∆ξ �
∆η � 0, means that the Jacobian of the transformation is nonzero. That is,

det � ∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y  �� 0 (35)

which is the Jacobian of the coordinate transformation.
If we define the above matrix as Λα !

β then we can define a vector as something that
transforms as, � ∆ξ

∆η � � � ∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y  � ∆x

∆y � (36)

as in, V α ! � Λα !
β V β.

The basis vectors in polar coordinates can be easily found out.�
er

� Λβ
r
�
eβ� Λx

r
�
ex
� Λy

r
�
ey� ∂x

∂r

�
ex
� ∂y

∂r

�
ey� cosθ

�
ex
� sinθ

�
ey (37)

Similarly, �
eθ
� � r sinθ

�
ex
� r cosθ

�
ey � (38)
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Given a scalar field φ, we can define a one-form d̃φ as a geometrical object with
components

d̃φ �"� �
∂φ � ∂ξ � ∂φ � ∂η ��� (39)

This makes sense, since from chain rule of partial differentiation we have,

∂φ
∂ξ

� ∂x
∂ξ

∂φ
∂x

� ∂y
∂ξ

∂φ
∂y

(40)

Therefore, � ∂φ
∂ξ
∂φ
∂η  � � ∂x

∂ξ
∂y
∂ξ

∂x
∂η

∂y
∂η  � ∂φ

∂x
∂φ
∂y  (41)

Here the conversion matrix is basically Λα
β ! and is the inverse of Λα !

β , as expected.
The basis one-forms are essentially,

d̃θ � ∂θ
∂x

d̃x � ∂θ
∂y

d̃y� � 1
r

sinθd̃x � 1
r

cosθd̃y � (42)

The interesting thing to note here is that the length of the basis vectors in polar
coordinates are not constant.# �

eθ

#
2 � �

eθ � �eθ
� r2 sin2 θ � r2 cos2 θ � r2 � (43)

The metric tensor in polar coordinates would have components,

gα ! β ! � g
� �
eα ! � �eβ ! � � �

eα ! � �eβ ! � (44)

which means that grr
� 1 � gθθ

� r2 and grθ
� 0. This is best described in writing the

expression of a line element,�
dl � �dl � ds2 � #

dr
�
er
� dθ

�
eθ

#
2 � dr2 � r2dθ2 (45)

3.1 Calculus in polar coordinates

The fact that the basis vectors in a general coordinate may change from place to place
makes differentiation difficult. If we want to see the change in the component of a
vector around a point, we then not only have to differentiate the components, we would
also have to consider the fact that the bases would also change. The differentiation of
the basis vectors would have to be incorporated too. Let us see what this means with
an example in the polar coordinate.

The derivatives of the basis vectors would be as follows:

∂
∂r

�
er

� ∂
∂r

�
cosθ

�
ex
� sinθ

�
ey � � 0

∂
∂θ

�
er

� ∂
∂θ

�
cosθ

�
ex
� sinθ

�
ey �� � sinθ

�
ex
� cosθ

�
ey
� 1

r

�
eθ (46)
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Similarly,

∂
∂r

�
eθ

� ∂
∂r

� � r sinθ
�
ex
� r cosθ

�
ey � � 1

r

�
eθ

∂
∂θ

�
eθ

� � r cosθ
�
ex � r sinθ

�
ey
� � r

�
er � (47)

Consider the derivative of
�
ex
� cosθ

�
er � 1

r sinθ
�
eθ.

∂
�
ex

∂θ
� ∂

∂θ
�
cosθ � �er

� cosθ
∂

∂θ
� �
er �$� ∂

∂θ
� 1
r

sinθ � �eθ � 1
r

sinθ
∂

∂θ
� �
eθ �� � sinθ

�
er
� cosθ

1
r

�
eθ � 1

r
cosθ

�
eθ � 1

r
sinθ

� � r
�
er � � 0 � (48)

as expected. But notice that the 1st and the 3rd terms here are from differentiating the
components of the vector in polar coordinates, whereas the 2nd and the 4th terms come
from differentiation of the basis vectors in polar coordinates. In general, we will write,

∂
�
V

∂r
� ∂

∂r

�
V r �er

� V θ �eθ �� ∂V r

∂r

�
er
� V r ∂

�
er

∂r
� ∂V θ

∂r

�
eθ
� Vθ ∂

�
eθ

∂r
∂
∂r

�
V α �eα � � ∂V α

∂r

�
eα
� Vα ∂

�
eα

∂r
α � r� θ (49)

And more generally,

∂
�
V

∂xβ
� ∂

�
V α

∂xβ
�
eα
� V α ∂

�
eα

∂xβ
� ∂

�
V α

∂xβ
�
eα
� VαΓµ

αβ
�
eµ � (50)

where Γµ
αβ are called the Christoffel symbols They are essentially the µ-th component

of ∂ %eα
∂xβ .
In polar coordinates,

∂
�
er

∂r
� 0 & Γµ

rr
� 0 � forallµ

∂
�
er

∂θ
� 1

r

�
eθ & Γr

rθ
� 0 � Γθ

r' θ � 1
r

∂
�
eθ

∂r
� 1

r

�
eθ & Γr

θr
� 0 � Γθ

θr
� 1

r
∂
�
eθ

∂θ
� � r

�
er & Γr

θθ
� � r � Γθ

θθ
� 0 � (51)

In the equation (50) if we change the dummy indices µ � α and α � µ, then we
can write,

∂
�
V

∂xβ
� � ∂V α

∂xβ
� VµΓα

µβ � �
eα � (52)

We introduce a few new notations and write this as,

V α
;β
� V α' β � VµΓα

µβ � (53)

We will call ∂ %V
∂xβ

� V α
;β
�
eα � ∇

�
V the covariant derivative of

�
V .
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Similarly, we can define the divergence as V α
;α. In polar coordinates,

Γα
rα

� Γr
rr
� Γθ

rθ
� 1

r
Γα

θα
� Γr

θr
� Γθ

θθ
� 0 � (54)

Therefore, the divergence is,

V α
;α
� ∂V r

∂r
� ∂V θ

∂θ
� 1

r
V r � 1

r
∂
∂r

�
rV r � � ∂

∂θ
V θ � (55)

which is the familiar expression.
The covariant derivative of one-forms are abit different. We use the fact that a one-

form p̃ gives a number φ when acting on a vector
�
V . The derivative of φ (which is its

covariant derivative since φ does not depend on the basis vectors) is,

∇βφ � ∇β
�
pαV α �� ∂pα

∂xβ V α � pα
∂V α

∂xβ� ∂pα

∂xβ V α � pαV α
;β � pαV µΓα

µβ� � ∂pα

∂xβ � pµΓµ
αβ � V α � pαV α

;β � (56)

Therefore, if we set
�
∇β p̃ � α � �

∇p̃ � αβ � pα ;β
� pα ' β � pµΓµ

αβ, then we could write,
∇β

�
pαV α � � pα ;βV α � pαV α

;β. Therefore,

pα ;β
� pα ' β � pµΓµ

αβ � (57)

4 Curved spacetime

We are now in a position to discuss curved space. One talks of a manifold which is
basically a continuous space which looks locally like Euclidean space. For example
the surface of a sphere is a manifold. And so is any m-dimensional ‘hyperplane’ in
an n- dimensional Euclidean space (m ( n). Essentially a manifold is any set that
can be continuously parametrized, and the number of independent parameters is the
dimension of the manifold and the parameters are the coordinates.

Here we will only talk about differentiable manifolds, which are continuous and
differentiable. And we would also like to have a definition of a metric tensor in this
manifold. Such manifolds are called Riemannian manifolds. Notice that we have now
added some ‘structure’ to the manifold by adding the definition of the metric tensor –
a definition for distances and time differences.

Now it turns out that curved spaces are locally flat. In our context, this means that
at any point one can find a flat Minkowskian frame, that is a locally inertial frame, in
which laws of SR hold. Notice that we are saying that this is possible only locally, in a
small region of spacetime.

Mathematically, this basically means that one can find a frame near any point P in
which the metric tensor has the components gαβ

�
P � � ηαβ for all α � β, and also that

10



gαβ ' γ � 0 for all α � β � γ. That it is always possible can be proved by looking at the
number of components of gαβ and the number of constraints that the above equations
imply.

Suppose we want to find the components of gαβ in a different system. The trans-
formation matrix in the equation,

gαβ
� ∂xα

∂xα
∂xβ

∂xβ
gαβ (58)

has 16 coefficients. This means 16 equations. On the other hand, the number of inde-
pendent components in gαβ is 10, as it is a symmetric tensor. So, there are enough free
parameters to transform the metric tensor so that it can be put equal to the Minkowski
form at P . Now, the first derivatives, gαβ ' γ has 4 ) 10 components. This means that the
combined condition that the metric tensor is equal to the Minkowski form and that its
first derivatives vanish locally, has fifty conditions. How many equations do we have?
The transformation law for gαβ ' γ involves the above mentioned 16 transformation co-

efficients ∂xα

∂xβ and their forty derivatives ∂2xα

∂xβxγ . So, we have fifty six numbers and fifty

conditions to satisfy. This leaves room for three free spatial rotations and three Lorentz
velocity transformations.

So, we see that we can satisfy the above conditions, that is the metric is locally
Minkowskian and its first derivatives vanish there. Notice that in general we cannot
put the second derivatives to zero, as this would involve more equations than there are
numbers available.

What does this mean physically? We have essentially said that at any point one
can find a local inertial frame, in which laws of SR hold, and the vanishing of the first
derivatives of the metric tensor means that locally it is a flat space. This is essentially
the Principle of Equivalence. I will quote from Weinberg the formulation of the prin-
ciple as “that at every space-time point in an arbitrary gravitational field it is possible
to choose a ‘locally inertial coordinate system’ such that, within a sufficiently small re-
gion of the point in question, the laws of nature take the same form as in unaccelerated
Cartesian coordinate systems in the absence of gravitation”.

That we can do that actually due to the fact that the inertial and graviational masses
are equal. Einstein thought that this leads to the conclusion that in a free-falling eleva-
tor, for example, no homogeneous gravitational field can be detected. In other words,
for a particle in a graviational field, such as near the Earth, one can always find a frame,
the free-falling elevator, in which the particle would move according to the laws of na-
ture as if there were no gravitational field. Notice that it is only possible locally. Since
the graviational field near Earth is inhomogeneous, the particles would move closer in
the elevator as it falls down, revealing the gravitational field.

One talks of weak and strong equivalence principles in this context. The weak
principle involves only gravity. The strong equivalence principle means ‘all laws of
nature’ when we talk of particles following laws of nature.

Experiments by Eötvös and Dicke and others provide direct evidence for the weak
principle of equivalence, and hints for the strong principle, since they involve objects
of different compositions, with different ratios of neutrons and protons, say. They have
shown that the principle of equivalence is true within a very high accuracy (almost one
part in 1011).

Now let us go back to covariant differentiation. For this, we would have to take the
difference of vectors at two different points. In a curved space, however, this difference
should be done carefully since in between the points the space is curved and the concept

11



of the vectors at the two points, pointing in the ‘same’ direction is vague. But since
locally we can approximate the space as being flat, we can take the difference in the
limit as they get infinitesimally close together. This leads to some important results.
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4.1 Christoffel symbols and the metric

The relation between Christoffel symbols and the metric are very important for calcu-
lations and we will derive them now. Now, the local inertial frame is a frame in which
SR laws hold, and in SR the derivatives of basis vectors are zero, that is Christoffel
symbols vanish. This means that for the metric tensor, gαβ ;γ

� gαβ ' γ which is equal to
zero at P . But since this is a valid tensor equation, gαβ ;γ

� 0 at P in any basis.
Before we can express the Christoffel symbols in terms of the metric, we must

prove that Γµ
αβ

� Γµ
βα. Consider an arbitrary scalar field φ. Its first derivative ∇φ is a

one-form with components φ ' β. Its second covariant derivative ∇∇φ has components
φ ' β ;α. But locally, this is equal to φ ' β ' α, which is equal to φ ' α ' β as the partial deriva-
tives commute. So the tensor φ ' β ' α is symmetric in the local inertial frame, but if it is
symmetric in one frame it must be symmetric in all frames. So,

φ ' β ;α
� φ ' α ;β � (59)

But
φ ' β ;α

� φ ' β ' α � φ ' µΓµ
βα

� φ ' α ;β
� φ ' α ' β � φ ' µΓµ

αβ (60)

which leads to the result that Γµ
αβ

� Γµ
βα.

Now, from eqn (57) we can write,

gαβ ;µ
� gαβ ' µ � Γν

αµgνβ � Γν
βµgαν � (61)

This can be manipulated to write a series of equations,

gαβ ' µ � Γν
αµgνβ

� Γν
βµgαν

gαµ ' β � Γν
αβgνµ

� Γν
µβgαν

gβµ ' α � Γν
βαgνµ

� Γν
µαgβν � (62)

We sum these up and using the symmetry gαβ
� gβα, we get

gαβ ' µ � gαµ ' β � gβµ ' α � gνβ
�
Γν

αµ � Γν
µα � � gνµ

�
Γν

αβ � Γν
βα � � gαν

�
Γν

βµ
� Γν

µβ �� 2gανΓν
βµ � (63)

This leads to (after multiplying by gαγ and using gαγgαν
� δγ

ν),

Γγ
βµ
� 1

2
gαγ � gαβ ' µ � gαµ ' β � gβµ ' α � (64)
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4.2 Parallel transport

We would like to quantify the curvature of space, and it is easy to do it if we develop
the concept of parallel transport. Consider a triangle in flat space (with sides which
are not necessarily straight lines). Suppose at point A we start with a vector and try to
transport this vector around the triangle back to A. We will end up with the same vector.
But consider now a triangle on the surface of a sphere. Suppose B is the at the pole
and A and C are at the equator. We will find that as we try to transport a vector around
the loop, trying to keep the vector as close to parallel as possible to its counterpart at a
neighbouring place, then we would not get the same vecor at the end of the loop. The
difference is actually a measure of the curvature.

One must make clear at this point that we are talking of ‘intrinsic’ curvature. The
surface of a cylinder is actually flat — it looks curved because of the fact that the two
dimensional flat surface is embedded in three dimensional space. We would call this
sort of curvature the extrinsic curvature.

Suppose we parametrize a curve by the arc length s , the tangent to the curve is
basically a vector

�
U � d %x

ds where
�
U is not necessarily normalized. In a locally inertial

frame at a point P , the parallel transport of a vector
�
V would then mean that dV α

ds
� 0 �

UβV α' β. But in the locally inertial frame, U βV α' β � UβV α
;β. But since this is a valid tensor

equation, this must be true in all basis, and do it can be taken as the frame invariant
definition of parallel transport of vector

�
V along the curve with tangent

�
U . We will

write,
dV α

ds
� UβV α

;β � ∇ %U �V � 0 � (65)

Or, in other words,
UβV α' β � � Γα

µβV µUβ (66)

that is,
V α' β � � Γα

µβV µ � (67)

Now, in Cartesian coordinates, a straight line can be defined as a curve which paral-
lel transports its own tangent. In a general curved space, we can define ‘straight lines’,
which would call geodesics, as curves which parallel transports their own tangents.
That is,

UβUα
;β
� 0 � UβUα' β � Γα

µβUµUβ � 0 � (68)

Or, if one writes, Uα � dxα

ds and Uβ ∂
∂xβ

� d
ds , then

d
ds

dxα

ds
� Γα

µβ
dxµ

ds
dxβ

ds
� (69)

4.3 Curvature tensor

We would like to get a measure of the curvature by taking a vector around a closed
loop, that is, parallel transport it around a loop. Consider a small loop in the manifold,
whose four sides are the lines x1 � a � x1 � a � δa � x2 � b � x2 � b � δb. A vector

�
V is

first transported from A to B. From the equation for parallel transport, we have

∂V α

∂x1
� � Γα

µ1V µ � (70)
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Therefore, at B, the vector will be,

V α � B � � V α � A � �+* B

A

∂V α

∂x1 dx1� V α � A �$� *
x2 , b

Γα
µ1V µdx1 (71)

where the label x2 � b means the path AB. Similarly transporting it to C and then to D
gives,

V α � C � � V α � B �$� *
x1 , a - δa

Γα
µ2V µdx2

V α � D � � V α � C � � *
x2 , b - δb

Γα
µ1V µdx1 (72)

The last integral is negative because the path is traversed in the opposite x1 direction.
Finally when we arrive at A, we have

V α � A f inal � � V α � D � �.*
x1 , a

Γα
µ2V µdx2 � (73)

So, the net change is approximately,

δV α � V α � A f inal �$� Vα � Ainitial �/ *
x1 , a

Γα
µ2V µ � dx2 � *

x1 , a - δa
Γα

µ2V µ � dx2 � *
x2 , b - δb

Γα
µ1V µ � dx1 � *

x2 , b
Γα

µ1V µ � dx1/ � * b - δb

b
δa

∂
∂x1

�
Γα

µ2V µ � dx2 �.* a - δa

a
δb

∂
∂x2

�
Γα

µ1V µ � dx1/ δaδb �0� ∂
∂x1

�
Γα

µ2V µ � � ∂
∂x2

�
Γα

µ1V µ � �/ δaδb
�
Γα

µ1 ' 2 � Γα
µ2 ' 1 � Γα

ν2Γν
µ1 � Γα

ν1Γν
µ2 � V µ � (74)

One defines the Riemann Curvature Tensor Rα
µλσ as,

Rα
µλσ

� Γα
µσ ' λ � Γα

µλ ' σ � Γα
νλΓν

µσ � Γα
νσΓν

µλ � (75)

This is a � 1
3 � tensor that gives δV α when supplied with

�
V � δa

�
eσ � δb

�
eλ. Using the

relation between the Christoffel symbols and the metric in the last section, we can write
the curvature tensor in terms of the components of metric tensor. Locally, we can say
that the Christoffel symbols vanish, although their first derivatives do not. Since the
derivatives are,

Γα
µν ' σ � 1

2
gαβ � gβµ ' νσ

� gbetaν ' µσ � gµν ' βσ ��� (76)

we have,

Rα
βµν

� 1
2

gασ � gσβ ' νµ
� gσν ' βµ � gβν ' σµ � gσβ ' µν � gσµ ' βν

� gβµ ' σν � (77)

so that finally we have (from symmetry of the metric tensor components),

Rα
β ' µν

� 1
2

gασ � gσν ' βµ � gσµ ' βν
� gβµ ' σν � gβν ' σµ ��� (78)
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If we define Rαβµν
� gαλRλ

βµν, then one can show,

Rαβµν
� Rανβµ

� Rαµνβ
� 0 � (79)

Also,
Rαβµν

� � Rβαµν
� � Rαβνµ

� Rµναβ � (80)

This means that Rαβµν is antisymmetric on the first pair and on the second pair but
symmetric on exchange of the two parts.

We can contract the first and third index and get the Ricci tensor, Rβν
� gαmuRαβµν

�
Rµ

βµν, which is a symmetric tensor. The Ricci scalar is derived by contracting further,

R � gβνRβν.
We now derive the expression for the Einstein tensor. In a locally inertial (Minkowski)

frame,

Rαβµν ' λ � 1
2

�
gαν ' βµλ � gαµ ' βνλ

� gβµ ' ανλ � gβν ' αµλ ��� (81)

Using the symmetry of g, one can write,

Rαβµν ' λ � Rαβλµ ' ν � Rαβνλ ' µ � 0 � (82)

In general, one writes,

Rαβµν;λ
� Rαβλµ;ν

� Rαβνλ;µ
� 0 � (83)

This is called the Bianchi indentity. Let us apply the Ricci contraction to this iden-
tity (multiply by gαµ). The first term is gαµRαβµν;λ

� Rβν;λ. The second term is
gαµRαβλµ;ν

� � gαµRαβµλ;ν
� � Rβλ;ν. The last term is gαµRαβνλ;µ

� Rµ
βνλ;µ. So we

get,
Rβν;λ � Rβλ;ν

� Rµ
βνλ;µ

� 0 � (84)

We contract again by multiplying by gβν. We get,

R;λ � Rµ
λ;µ

� � � Rµ
λ;µ

� 0 � (85)

Here we have used the fact that

gβνRµ
βνλ;µ

� gβνgµαRαβνλ;µ
� � gβνgµαRβανλ;µ

� gµαRαλ;µ
� � Rµ

λ;µ � (86)

Now we can write the equation as,�
2Rµ

λ � δµ
λR � ;µ � 0 � (87)

Multiplying by gλσ, this can be written as,�
Rµσ � 1

2
gµσR � ;µ � �

Rαβ � 1
2

gαβR � ;α � 0 � (88)

And by defining the Einstein tensor Gαβ � Rαβ � 1
2 gαβR � Gβα, one can write,

Gαβ
;α

� 0 � (89)
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4.4 Toward Einstein’s equation – Stress energy tensor

In the Newtonian theory the source of gravity is the mass density ρ. It is tempting
to say that in a relativistic theory of gravity, the source term should be the mass and
energy density. But this quantity mn (c � 1, and n is the number density of particles)
varies as mn �"� m�

1 � v2

n�
1 � v2

. The last term is because of the length contraction in

the direction of the velocity and the resulting increase in number density. Now, this
transformation involves two factors of Λo

o
� 1�

1 � v2
, like the component of a tensor.

Probably it is a component of a � 2
0 � tensor.

Before we can discuss a � 2
0 � tensor that describes the matter-energy content

in a region, let us first look at a related � 1
0 � tensor. Consider the flux of particles

across surfaces defined by xα � constant, that is number crossing per unit area per unit
time. If in the lab frame we have a bunch of particles (with rest density n) all with
x-velocity v, then the flux across a surface of constant x is nv�

1 � v2
. We can easily

convince ourselves that, in general, the flux of particles with velocity
�
v across a surface

xα � constant is nUα. If α � 0 (the flux across a constant time surface), we have the
density of particles. Let us try to build a higher order tensor which is similar to this.
Instead of flux of particles, we consider the flux of momenta.

We define this Stress-energy tensor as having components T αβ which is the flux of
α- momentum across a surface of constant xβ. Mathematically, we can write it as,

T αβ � ρUαUβ � (90)

Let us see what this means for different systems.
(1) Motionless dust: A dust is a collection of particles with straight, mutually par-

allel worldlines. If the worldlines are parallel to the time axis of a certain inertial
observer, then for him the dust is motionless. In this case, there is no momentum, and
therefore, only one element of T is nonzero: T 00 � ρ � rest mass density.

(2) Dust with fixed velocity: In this case the tensor would have components,

T αβ � ρ
1

1 � v2 1223 1 v1 v2 v3

v1 �
v1 � 2 v1v2 v1v3

v2 v2v1 �
v2 � 2 v2v3

v3 v3v1 v3v2 �
v3 � 2

46557 � (91)

(3) Monoenergetic gas: Here the particles move with the same speed v, but their
directions of motion are random and the particles are not considered to interact in any
way. The stress energy tensor for this gas can be found by averaging the previous one
over all directions. Which means that terms like v1 will average out to zero, while the
average of

�
v1 � 2 etc. will be v2 � 3. That is, (in MCRF)

T αβ � ρ
1

1 � v2 1223 1 0 0 0
0 v2 � 3 0 0
0 0 v2 � 3 0
0 0 0 v2 � 3

4 557 � (92)

Here we see the appearance of an isotropic pressure p � 1
3 ρ 1

1 � v2 v2.
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(4) Stationary general gas: Again the particles are noninteracting, but now they
have a distribution of speed v. Averaging the matter tensor the previous case over the
distribution one gets (in MCRF),

T αβ � 1223 ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

46557 � (93)

Or, T αβ � �
ρ � p � UαUβ � pηαβ.

So, T represents the energy and momentum content of a gas. This means that
there must be some law of conservation for T. Consider a fluid element (say, in two
space directions, at a constant time). The rate of flow of energy across the face with
x � 0 is l2T 0x, and across the face x � l is � l2T 0x, since it would be in the opposite
direction (we want the flow into the fluid element). Similarly, the energy flowing in the
y-direction is l2T 0y � y � 0 �"� l2T 0y � y � l � . The sum of these rates must be the rate of
increase of energy inside, ∂

�
T 00l3 �8� ∂t. Therefore we have (dividing by l3 and taking

the limit l � 0,
∂
∂t

T 00 � � ∂
∂x

T 0x � ∂
∂y

T 0y � ∂
∂z

T 0z � (94)

Or, in other words,
T 00' 0 � T 0x' x � T 0y' y � T 0z' z � T 0α' α � 0 � (95)

This is essentially the law of conservation of energy. Similarly from the conservation
of momentum, one gets in general,

T αβ' β � 0 � (96)

This is what is expected from SR. Now since in the locally inertial frame we can convert
the comma to semicolon, so from equivalence principle, it would be true in all frames.
So, we can write,

T αβ
;β

� 0 � (97)

4.5 Einstein’s equation

Comparing the two equations Gαβ
;β

� 0 and T αβ
;β

� 0 it is tempting to say that they are
proportional. We can write G=k T where k is some constant. This is not the most
general equation that one can write though. In general, one would like an expression

involving the metric to be equal to T. This expression should be a � 2
0 � tensor. Ricci

tensor is one such tensor. The most general equation that one can write is,

Fαβ � Rαβ � µgαβR � Λgαβ � (98)

where µ � Λ are constants. To determine µ we use the law of conservation of T. This
means that Fαβ

;β
� 0. Since gαβ

;µ
� 0, we have,�

Rαβ � µgαβR � ;β � 0 � (99)
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From the definition of G we know that this is possible only when µ � � 1
2 . Therefore,

Gαβ � Λgαβ � kT αβ � (100)

where k � Λ are constants. Without the indices, this is G+ Λ g � T.
We will come to the Λ term when we discuss cosmology, since it was not originally

present in Einstin’s equation, and was introduced by him later, and for the time being
we will just use,

Gαβ � 8π
�
G � c2 � T αβ � (101)

where we have put k � 8π
�
G � c2 � . We will soon see that this is needed to make the

relativistic theory of gravitation consistent with the Newtonian theory in the limit.

5 Application of Einstein’s equation

5.1 Weak field limit

In the limit of weak fields, we assume that g is almost Minkowskian; that is,

gαβ
� ηαβ

� hαβ � (102)

where hαβ are corrections to the Minkowski tensor ηαβ. We will try to compute the
gravitational field equations to first order in hαβ. This is the weak field limit.

To first order in hαβ, the Ricci tensor is,

Rλσ
� 1

2
ηαµ � hλµ ' ασ

� hασ ' λµ � hλσ ' αµ � hαµ ' λσ ��� (103)

since the other terms contain products of Christoffel symbols and are of order h2. Re-
arranging, we can write (and writing 9 φ �;: � ∂2

∂t2
� ∇2 < φ � ηαµφ ' αµ),

Rλσ
� 1

2 =	> hα
λ ' α � �

1 � 2 � h ' λ ? ' σ � ∂
∂xλ

: hα
σ ' α � 1 � 2 � h ' σ < �+9 hλσ @ � (104)

where we have used the Minkowski tensor to raise and lower the indices, hα
λ
� ηαµhµλ,

h � ηαµhαµ.
Now, we can change the hα

β by a coordinate transformation xα � xα � ξα. This gives
four free functions ξα � x � . We can choose them so as to satisfy the four conditions,

hα
λ ' α � �

1 � 2 � h ' λ � 0 � (105)

This is called the Lorentz Gauge. By doing this, we can write,

Rλσ
� � 1

2
9 hλσ � (106)

Now, we can rewrite the Einstein equation Rαβ � 1
2 gαβR � 8πGTαβ, by taking the trace

of the equation,
R � � 8πGT � (107)

where T � T α
α is the trace of the stress-energy tensor, and we have used gαβgαβ � δα

α
�

4. That is,

Rαβ
� 8πG

�
Tαβ � 1

2
gαβT ��� (108)
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Therefore, we can write, in the weak field limit,9 hαβ
� � 16πG

�
Tαβ � ηαβT � 2 ��� (109)

Notice that this is basically a wave equation and gives rise to what are called the grav-
itational waves.

Now, in the nonrelativistic limit T00
� � ρ � is the most dominant term and T �

gαβTαβ
� g00T00

� � ρ. And we will also ignore gravitational radiation and say that
the time derivatives of hαβ are small compared to its space derivatives. So that we can

write (noting that 9A� ∇2 if one drops the time derivative, as 9 � � ∂
∂t2

� ∇2),

∇2h00
� � 8πGρ � ∇2hi j

� � 8πGρδi j � ∇2h0i
� 0 � (110)

Comparing these with Poisson’s equation ∇2φ � 4πGρ, φ is the Newtonian potential,
we can write,

h00
� � 2φ � hi j

� � 2δi jφ � h0i
� 0 � (111)

So that g00
� � 1 � 2φ, gi j

� 1 � 2φ. Therefore, in the weak field limit, the interval can
be written as,

ds2 � � � 1 � 2φ � dt2 � �
1 � 2φ � � dx2 � dy2 � dz2 ��� (112)

Let us look at the equation of motion of particles in this weak field limit. Since φ is
small, we will work out things to first order in φ. For a freely falling particle, the four-
momentum vector is

�
p � m

�
U , where

�
U � d

�
x � dτ. Since the path of the freely falling

particle is to be a geodesic, which is given by,

∇ %U �
U � 0 � (113)

Since any constant times the proper time can also be a parameter for labeling the world-
line, we can also write the equation in terms of the momentum vector as,

∇ %p �p � 0 � (114)

Now, in the non-relativistic limit, the time component of this equation is,

pα p0' α � Γ0
αβ pα pβ � 0 � (115)

Since in the non-relativistic limit p0 B p1, and since pα∂α
� mUα∂α

� md � dτ, we
have,

m
d
dτ

p0 � Γ0
00
�
p0 � 2 � 0 � (116)

But,

Γ0
00

� 1
2

g0α � gα0 ' 0 � gα0 ' 0 � g00 ' α � � 1
2

g00g00 ' 0 � 1
2

1� � 1 � 2φ � � � 2φ ' 0 �/ φ ' 0 � 0
�
φ2 ��� (117)

We had used the fact that since C gαβ D is diagonal, C gαβ D is also diagonal and its elements
are the reciprocals of C gαβ D . So, g0α is nonzero only when α � 0. Therefore, to first
order in φ,

d
dτ

p0 � � m
∂φ
∂t

� (118)
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This basically means that energy is conserved unless the gravitational field depends on
time, which is consistent with the Newtonian theory.

The spatial components of the geodesic equation are,

pα pi' α � Γi
αβ pα pβ � 0 � (119)

Or, to the lowest order in velocity,

m
dpi

dτ
� Γi

00
�
p0 � 2 � 0 � (120)

neglecting pi in the summation of Γ. We put
�
p0 � 2 / m2, and write,

dpi

dτ
� � mΓi

00 � (121)

Now,

Γi
00
� 1

2
giα � gα0 ' 0 � gα0 ' 0 � g00 ' α ��� (122)

Again, since C gαβ D is diagonal, we have giα � �
1 � 2φ � � 1δiα. This gives us,

Γi
00
� 1

2

�
1 � 2φ � � 1δi j � 2g j0 ' 0 � g00 ' j ��� (123)

(We have changed α to j as δi0 � 0.) But since g j0
� 0, we have,

Γi
00

� � 1
2

g00 ' jδi j � 0
�
φ2 �� � 1

2

� � 2φ � ' jδi j � (124)

And the equation of motion is then,

dpi

dτ
� � mφ ' jδi j � (125)

This is the usual Newtonian theory, since the force of a gravitational field is � m∇φ. So
we see that we have recovered the Newtonian theory in the weak field limit.
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5.2 Spherically symmetric metrics: Schwarzschild metric

We will derive the metric for a centrally symmetric metric. If we use the ‘spherical’
space coordinates, r� θ � φ, then the most general centrally symmetric metric that one can
write is,

ds2 � h
�
r� t � dr2 � k

�
r� t � � sin2 θdφ2 � dθ2 � � l

�
r� t � dt2 � a

�
r� t � dr dt � (126)

where a � h � k � l are some functions of r and t. By the way, in Euclidean geometry we
would have called a metric centrally symmetric if the metric is the same for all points
located at the same distance from the center, that is, with the same radius vector. But
in curved space-time, there is nothing like a ’radius vector’, that is, there is no quantity
which gives the distance from the centre and is equal to the circumference divided by
2π. So, our choice of the ‘radius vector’ is arbitrary. So that we can transform the
coordinates r� t without destroying the central symmetry of ds2 as,

r � f1
�
r EF� t E6��� t � f2

�
r EG� t EH��� (127)

where f1 � f2 are some functions.
Now, we use this possibility to choose the coordinate r and time t so that the co-

efficients a
�
r� t � vanishes and k

�
r� t � � r2. The last condition means that r is defined

in such a way that the circumference of a circle with centre at the origin of coordi-
nates is equal to 2πr, since the element of arc of a circle in the plane θ � π � 2 is equal
to dl � rdφ. We will write the functions h � l in exponential form, as � exp

�
2Φ � and

exp
�
2Λ � respectively. So that we have,

ds2 � � exp
�
2Φ � dt2 � exp

�
2Λ � dr2 � r2 � dθ2 � sin2 θdφ2 ��� (128)

We will simplify the calculations somewhat easier by assuming that Φ � Λ are indepen-
dent of time, that is the metric is a static one. However, it can be proved that a centrally
symmetric metric is always static.

The metric components are,

g00
� � exp

�
2Φ � � grr

� exp
�
2Λ ��� gθθ

� r2 � gφφ
� r2 sin2 θ � (129)

Clearly,

g00 � � exp
� � 2Φ � � grr � exp

� � 2Λ ��� gθθ � r
� 2 � gφφ � r

� 2 sin
� 2 θ �

(130)
The non-zero Christoffel symbols are then (denoting differentiation with respect to r
by E ),

Γ0
0r
� Φ E

Γr
00
� e2

�
Φ � Λ � Φ E Γr

rr
� Λ E

Γr
θθ
� � re

� 2Λ Γr
φφ
� � re

� 2Λ sin2 θ
Γθ

rθ
� r

� 1 Γθ
φφ
� � sinθcosθ

Γφ
rφ
� r

� 1 Γφ
θφ
� cotθ

(131)

The Ricci scalar looks like ,

R � e
� 2Λ � � 2Φ E E	� 2

�
Φ E6� 2 � 2Φ E Λ E	� 4r

� 1Φ E � 4r
� 1Λ EI� 2r

� 2 � � 2r
� 2 � (132)
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The Einstein tensor has the following non-zero components,

G00
� 1

r2 e2Φ d
dr

C r � 1 � e
� 2Λ � D

Grr
� � 1

r2 e2Λ � 1 � e
� 2Λ � � 2

r
Φ E

Gθθ
� r2e

� 2Λ � Φ E � r � Λ E � r � Φ E E � �
Φ E � 2 � Φ E Λ E �

Gφφ
� sin2 θGθθ (133)

In the vacuum outside the star, for example, we can set the stress-energy tensor
equal to zero. The

�
00 � component gives us,

r
�
1 � e

� 2Λ � � constant � B � (134)

or equivalently,

e
� 2Λ � 1 � B

r
� (135)

The
�
rr � component gives,

2dΦ � B
r
�
r � B � dr � d

�
ln
�
1 � B � r �J�K� (136)

so that, apart from a constant,

e2Φ � 1 � B
r
� (137)

We can absorb this constant in our definition of time, and write the metric as,

ds2 � � � 1 � B � r � dt2 � 1
1 � B � r

dr2 � r2 � dθ2 � sin2 θdφ2 ��� (138)

If we want the field far from an object of mass M to resemble the Newtonian field, then
we must have � g00

� 1 � 2φ � c2 � 1 � 2GM � � rc2 � . So that the constant is basically
2GM � c2. So, the metric now looks like (at large r),

ds2 / � � 1 � 2GM � � rc2 �J� dt2 � �
1 � 2GM � � rc2 � dr2 � r2 � dθ2 � sin2 θdφ2 ��� (139)

This is the Schwarzschild metric.

5.3 Orbits in Schwarzschild geometry

From the metric we can immediately infer that since it is independent of time, p0 is
constant. Also pφ is a constant. Let us define two constants for particles and photons:

Ẽ � � p0 � m
�
particles ��� E � p0

�
photons �

L̃ � pφ � m � L � pφ � (140)

where m is the rest mass of the particle. Also it can be shown (we are not going to do
it here, but we know it from Newtonian theory anyway) that the orbit is confined in a
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plane, so that θ is a constant. Now pθ ∝ dθ
dλ

� 0 where λ is some parameter on the orbit.
So, we have

p0 � g00 p0
� m

1 � 2M � r Ẽ p0 � E
1 � 2M � r

pr � m
dr
dτ

pr � dr
dλ

pφ � gφφ pφ
� m

r2 L̃ pφ � L
r2 (141)

Now the equation
�
p � �p � � m2 gives us, for particles,� m2Ẽ2�

1 � 2M � r � m2

1 � 2M � r � dr
dτ
� 2 � m2L̃2

r2
� � m2 � (142)

and for photons, � E2

1 � 2M � r � 1
1 � 2M � r

� dr
dλ

� 2 � L2

r2
� 0 � (143)

Or equivalently, � dr
dτ � 2 � Ẽ2 � �

1 � 2M � r � � 1 � L̃2 � r2 � (144)

for particles, and for photons,� dr
dλ � 2 � E2 � �

1 � 2M � r � � L2 � r2 ��� (145)

We can define the effective potentials as,

Ṽ 2 � r � � �
1 � 2M � r � � 1 � L̃2 � r2 � V 2 � r � � �

1 � 2M � r � � L2 � r2 ��� (146)

So that, for particles, we can write : dr
dτ
< 2 � Ẽ2 � Ṽ2 � r � , or,

d2r
dτ2

� � 1
2

d
dr

Ṽ 2 � r ��� (147)

This means that circular orbits (r � constant) is possible at the minimum and maximum
values of Ṽ 2 � r � . The unstable point is at,

d
dr L � 1 � 2M � r � � 1 � L̃2 � r2 �NM � 0 � (148)

which gives,

r � L̃2

2M
� 1 OQP �

1 � 12M2 � L̃2 � � � (149)

So, no stable orbits are possible if L̃2 R 12M2. The effective potential in Newtonian
theory is different, and is given by (writing l̃ � l � m � r2φ̇ and omitting G),

VNewt
�
r � � � M � r � l̃2

2r2 � (150)

so that the distance for a circular orbit was given by,

r � l̃2

M

� � l̃2

GM
��� (151)

For photons there is only a possibility of a unstable orbit and it is at r � 3M.
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5.4 Perhelion Shift : Optional

If the orbit of a slightly non-circular orbit does not close, its perihelion will shift in
time. We can derive the shift (in φ) by writing an equation of the orbit in terms of r and
φ. We can write,

dφ
dτ

� Uφ � pφ

m
� gφφ pφ

m
� gφφL̃ � L̃2

r2 � (152)

Using the expression for
�
dr � dτ � and this expression, one gets,: dr

dφ
< 2 � Ẽ2 � �

1 � 2M � r � � 1 � L̃2 � r2 �
L̃2 � r4

� (153)

We define r � 1 � u (that is, dr � � du � u2) and write,: du
dφ

< 2 � Ẽ2 � �
1 � 2M � r � � 1 � L̃2 � r2 �

L̃2 � r4� Ẽ2

L̃2
� �

1 � 2Mu � � 1

L̃2
� u2 ��� (154)

We recover the Newtonian approximation by neglecting the u3 terms, which gives,: du
dφ

< 2
Newt

� Ẽ2

L̃2
� 1

L̃2

�
1 � 2Mu �$� u2 � (155)

The circular orbit is given by (as discussed in the earlier section) u � M � L̃2. Let us
definite a parameter y � u � M � L̃2 to describe the deviation from circularity. Then one
can write in the Newtonian case,: dy

dφ
< 2

Newt
� Ẽ2 � 1

L̃2
� M2 � L̃4 � y2 � (156)

whose solution is of the type y � Acos
�
φ � B � where A and B are constants. This gives

for the orbit,
1
r
� M � L̃2 � Acos

�
φ � B ��� (157)

which is the equation for an ellipse. The particle comes back to the same r after it goes
through ∆φ � 2π.

Let us do the same exercise keeping the u3 term. We can write for the same param-
eter y, : dy

dφ
< 2 � Ẽ2

L̃2
� �

1 � 2M
�
y � M � L̃2 �J� � 1

L̃2
� y2 � M2

L̃4
� 2y

M

L̃2 �� Ẽ2 � M2 � L̃2 � 1

L̃2
� 2M4

L̃6
� 6M3

L̃2
y � � 6M2

L̃2
� 1 � y2� A2k2 � ky0y � k2y2 � (158)

Here k �  �
1 � 6M2 � L̃2 � . The solution for this is,

y � y0
� Acos

�
kφ � B ��� (159)

which shows that the orbit would come back to the same r only after kφ has gone
through an angle 2π. For each orbit though the shift would be

∆φ � 2π � k � 2π
�
1 � 6M2 � L̃2 � � 1 S 2 / 2π

�
1 � 3M2 � L̃2 ��� (160)
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so that the ‘shift’ is 6πM2 � L̃2 per orbit. Now, for circular orbits, approximately, L̃2 /
Mr. So that the shift is 6πM � r � � 6πGM � � c2r �J� . For Mercury (r � 5 � 6 ) 107 km) and
M T � 2 ) 1033 g, one has a shift of 5 ) 10

� 7 radians per orbit. Since each orbit takes
0 � 24 year, this comes to about 43 E E per century.

Note that a perihelion shift is also there in the Newtonian theory, when one takes
into account the fact that there are other massive bodies in the solar system. The shift
derived above is the difference between the observed value and what is predicted from
the Newtonian theory.
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5.5 Bending of light : optional

Using the expressions for
�
dr � dλ � 2 and

�
dφ � dλ � 2 for photons, one can write,� dφ

dr
� 2 � L2 � r4�

E2 � �
1 � 2M � r � � L2 � r2 �8� � (161)

so that,
dφ
dr

� O 1

r2 U E2

L2 � �
1 � 2M � r � 1

r2 V � (162)

We define b � L � E and u � 1 � r (dr � � r2du), and write,

dφ
du

� 1U 1
b2 � u2

�
1 � 2Mu � V 1 S 2 � (163)

In Newtonian theory, one would have,

dφ
du

� 1U 1
b2 � u2 V 1 S 2 � (164)

whose solution would be the straight line,

r sin
�
φ � φ0 � � b � (165)

which is the orbit of the photon with an impact parameter b (the minimum distance).
We define y � u

�
1 � Mu � so that u � y � � 1 � Mu � / y

�
1 � Mu � / y

�
1 � My � , and du ��

1 � 2My � dy. We then have,

dφ
dy

� 1 � 2MuU 1
b2 � u2 V 1 S 2 � (166)

whose solution is,

φ � φ � 2M � b � arcsin
�
by �$� 2M W 1

b2 � y2 � (167)

At infinity, one has y � 0 and φ � φ0. At the closest approach, r � b one has y X 1 � b
and φ � φ0

� 2M � b � π � 2. So, by symmetry, when the photon again recedes to infinity,
it would acquire another φ � 2M � b � π � 2, so that finally, one would have a deviation
of π � 4M � b. So, the bending angle, would be 4M � b � � 4GM � � c2b �8� . For Sun, at the
solar radius, this amounts to X 1 E E � 74.

5.6 Gravitational redshift

It is clear that any relativistic theory of gravity would predict redshift due to gravita-
tion. Consider the following gedanken experiment. There is an endless chain running
between the Earth and the Sun carrying buckets containing atoms in an excited state on
one side and an equal number of atoms in the ground state on the other side. Since the
excited atoms possess greater energy and so are heavier and so that side of the chain
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would fall toward the Sun whose gravitational field dominates. Suppose we have a de-
vice which returns an atom to the ground state, collects the emitted photon and reflects
it back to the Earth where it is used to excite an incoming atom in the ground state. We
would then have a perpetual motion machine. So, something must be wrong with the
argument somewhere. It is because the radiation coming to Earth is not sufficiently en-
ergetic to excite the incoming ground state atom. In other words, it loses energy while
climbing up the gravitational field of the Sun.

let us quantify this redshift. We consider two observers carrying ideal atomic clocks
whose worldlines are xα � xα

1 and xα � xα
2 . Let the first observer send out radiation to

the second observer. We denote the time separation between successive wave crests
as measured by the first clock by dτ

�
1 � in terms of proper time and by dx0

1 in terms
of coordinate time. It follows that dτ

�
1 � 2 � g00

�
xα

1 � � dx0 � 1 � 2. Let the corresponding
interval of reception recorded by the second observer be dτ

�
2 � in proper time, which

is given by, dτ
�
2 � 2 � g00

�
xα

2 � � dx0 � 2 � 2. We assume that the space-time is static, that
is dx0

1
� dx0

2, because otherwise there would be a build-up or depletion of wave crests
between the two observers, in violation of the static assumption. So, the ratio of the
proper times is


g00

�
xα

2 �8� g00
�
xα

1 � . This tells one how many times the second clock
has ticked between the reception of two wave crests. It follows that if the atomic clock
has characteristic frequency νem, then the second observer will measure a frequency
νobs

� νem


g00

�
xα

1 �8� g00
�
xα

2 � .
In the weak field limit g00

� � 1 � 2φ, and one has for the shift in energy and
frequency,

∆ν
ν

� νem � νobs

νem

� 1 � 1 � φ1

1 � φ2
X φ2 � φ1

� � �
φ2 � φ1 �8� c2 ��� (168)

For the Schwarzschild metric one has,

∆ν
ν

XY� GM
c2 � 1

r1
� 1

r2 � � (169)

Numerically, the shift for a height of 100 ft, say, in the Earth’s graviational field, is
only of order 10

� 15. The experiment by Pound and Rebka in 1960 showed that it was
true within an accuracy of 1 %.

5.7 Friedmann-Robertson-Walker metric

Let us derive a metric which will be useful to us for cosmology. We will soon see that
observations tell us that our universe at large scale is homogeneous and isotropic. To be
precise, we assume that spacetime can be sliced into (hyper)surfaces of constant time
which are homogeneous and isotropic. We will also assume that the mean rest frame
of galaxies agrees with this definition of simultaneity.

Each galaxy is thought to have no random motions, and the time coordinate t is
assumed to be the proper time for each galaxy. We will however allow for time depen-
dence of the metric coefficients, since we will soon see that our universe does seem to
expand. So, at a given time t0, the constant-time surface has a line element,

dl2 � t0 � � hi jdxidx j � (170)

Then the expansion of the constant-time surface can be represented by

dl2 � t1 � � f
�
t1 � t0 � hi j

�
t0 � dxidx j � hi j

�
t1 � dxidx j � (171)
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where we have assumed that all hi js increase at the same rate, to make the expansion
isotropic. In general, then we can write,

dl2 � t � � R2 � t � hi jdxidx j � (172)

where R is an overall scale factor, which equals 1 at t0. So, the metric would be,

ds2 � � dt2 � g0idt dxi � R2 � t � hi jdxidx j � (173)

where we have put g00
� � 1 since we assumed that t is the proper time along a line

dxi � 0. But if the local Lorentz frame of a galaxy has to agree with the definition of
simultaneity given by t � constant, then in the comoving frame the base vectors

�
e0 and�

ei should be orthogonal. This means that g0i
� �

e0 � �ei
� 0. So that we have,

ds2 � � dt2 � R2 � t � hi jdxidx j � (174)

Now, since the constant time hypersurface is isotropic about every point, it must be
spherically symmetric about the origin of the coordinates. We have seen that such a
metric has the line element,

dl2 � e2Λ
�
r � dr2 � r2 dΩ2 � (175)

Also, isotropy about every point implies homogeneity. In particular, this means that
the Ricci scalar should have the same value everywhere. We can use the expression for
the Ricci scalar we had derived for centrally symmetric metrics, after putting Φ � 0 as,

R � e
� 2Λ � 4Λ EH� r � 2 � r2 � � 2 � r2 � 2

r2

d
dr

�
r � re

� 2Λ � � k � (176)

where k is a constant. This is easily integrated to give,

e2Λ � grr
� 1

1 � 1
6 kr2 � A � r

� (177)

where A is a constant of integration. The assumption of local flatness at r � 0 makes
A � 0. Redefining the constant k, we then have,

ds2 � � dt2 � R2 � t � = dr2

1 � kr2
� r2dΩ2 @ � (178)

This is the Friedmann-Robertson-Walker metric. We can define the coordinate r in
such a way that k takes only three values � 1 � 0 � 1. For example, if k � � 3, then we can
redefine r � �

3r, k � � 1, and R � 1 � � 3R, and the line element becomes,

dl2 � R
2 �

t � = dr2

1 � kr2
� r2dΩ2 @ � (179)

One cannot however change the sign of k.
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