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1 Structure formation

1.1 Preliminaries: suppression and growth of inhomogeneities

We will assume that we can isolate a region small enough for the Newtonian potential
energy and the relative particle velocities to be small, so that we can use the Newto-
nian mechanics. If one considers a homogeneous mass distribution, the gravitational
potential energy belonging to the mass M contained in the sphere of proper radius R is,

Φ � GM
R
� GρbR2 � � HR � 2 � (1)

where we have assumed Ω0
� 1 for the last equality, so that the expansion is dominated

by the mass term, which is true within an order of magnitude at present epoch. If the
size R of the structures considered is small compared to the Hubble radius H � 1, the
Hubble velocities are non-relativistic. If the density contrast is small, this also means
that the gravitational potential is non-relativistic. And the structures we want to study,
like the formation of galaxies, are quite non-relativistic (apart from things happening
in the nucleus).

First we will consider matter as a pressureless fluid. The fluid equations are (mass
conservation, equation of motion and Poisson equation), are,

∂ρ
∂t
� ∇ � � ρ �v �	� 0 �

∂ �v
∂t
� � �v �∇ �
�v ��� ∇φ �

∇2φ � 4πGρ � (2)

This is in the Eulerian coordinate system, which includes the expansion of the uni-
verse. Another approach in fluid dynamics is to use the Lagrangian coordinates, which
do not change in time. Here we will instead use a similar coordinate system, called
the comoving coordinate system (which we have already encountered). We define a
comoving coordinate system �x so that points expanding with the background universe
have fixed coordinates in the comoving frame. The comoving coordinates �x are related
to the proper (physical) coordinates �r by �r � R

�
t ��x. The proper velocity at any point is�v � Ṙ �x � R˙�x. The second term is the peculiar velocity and it describes departures from
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uniform Hubble flow �v � Ṙ �x. We will define a peculiar velocity in the comoving frame�u � ˙�x. We also assume that the density can be written as,

ρ
� �x � t �	� ρ

�
t � � 1 � δ

� �x � t �� � (3)

so that we can write the fluid equations in the coordinate frame as,

∂δ
∂t
� ∇x ���u � ∇x � � �uδ ��� 0 �

∂ �u
∂t
�

2
Ṙ
R
�u � � �u �∇x ���u ��� ∇xφ̃ � R2 �

∇2
x φ̃ � R2 � 4πGρδ � (4)

where ∇x denotes gradients with respect to the comoving coordinates x (that is, ∇x � R �
∇). Note that we have not yet linearlized the set of equations. Also, note that these
equations are valid in the comoving frame in which Hubble expansion (Ṙ �x) has been
taken out (it is constant in this frame). This meant that the term

�
Ṙ �x �∇ � � R �u ��� Ṙu.

If we Fourier transform these equations, assuming that the perturbed quantities (the
fractional density perturbation δ, the three components of peculiar velocity �u and the
potential perturbation φ̃) are periodic in a large box of volume V , that is,

δ
� �x � t ��� �

2π � 3 � 2
V 1 � 2 ∑�

k

δ
�
kei

�
kx �

δ
�
k � �

2π � 3 � 2
V 1 � 2 � δe � i

�
kxd3x � (5)

where �k is a comoving wavenumber. Note that δ
� �x � is dimensionless but δk has units

of length3 � 2. We then get,

dδ
�
k

dt
�

i�k ���u�k � ∑�
k � iδ�k � � �k ���u�k � �k � �	� 0 �

d �u�k �
dt
�

2
Ṙ
R
�u�k � � ∑�

k � i ���u�k � � � �k � �k �������u�k � �k � � i
�k

R2 φ̃
�
k
�

φ̃
�
k � R2 � � 4πGρ

δ
�
k! �k ! 2 � (6)

The terms under the summation sign denote coupling between the different Fourier
modes, which we will neglect in the linear perturbation theory.

Now, neglecting the non-linear terms, we have a single second-order differential
equation,

d2δ
�
k

dt2
�

2
Ṙ
R

dδ
�
k

dt
� 4πGρδ

�
k � 0 � (7)

In a matter dominated Ω0 � 1 universe, R
�
t � ∝ t2 � 3 and so we have,

d2δ
�
k

dt2
� 4

3t

dδ
�
k

dt
� 2

3t2 δ
�
k � 0 � (8)

So, one has two solutions with a growing and decaying mode and the general solution
is,

δ
�
k � A

�
kt2 � 3 � B

�
kt � 1 � (9)
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So, the growing mode has an amplitude δ that is proportional to the scale factor, and so
an 0 � 01 % perturbation at 1 � z � 1000 will become a 10% perturbation by z � 0. In a
matter dominated Ω " 1 universe, R

�
t � ∝ t at z # 1 � Ω0 � 1, and the solution is,

δ
�
k � A

�
k
�

B
�
kt � 1 � (10)

so that the fluctuations freeze out at z � 1 � Ω0 � 1 when free expansions start. If there
is a cosmological constant then if it dominates the density, then one has,

d2δ
�
k

dt2
�

2H
dδ
�
k

dt
� 0 � (11)

which has solutions δ � constant and exp
� � 2Ht � . Thus the growing mode stops grow-

ing when the universe becomes vacuum- dominated.

1.2 Fluctuation in a smooth relativistic background

Because of free-streaming of collisionless relativistic particles, fluctuations in a sea of
relativistic particles would grow differently. In this case it is safe to assume that the
relativistic particles would be smoothly distributed in scales much smaller the Hubble
scale, and so the perturbation in the non-relativistic matter would provide the gravita-
tional source term,

d2δ
�
k

dt2
�

2
Ṙ
R

dδ
�
k

dt
� 4πGρmδ

�
k � 0 � (12)

and the only effect of the relativistic component is to change the background expansion
rate, �

Ṙ � R � 2 � � 8 � 3 � πG
�
ρm
� ρR � (13)

Here, ρm ∝ R � 3 and ρR ∝ R � 4. If we transfer the variable t to η � ρm � ρR, then we
would have,

d2δ
�
k

dη2
� � 2 � 3η �

2η
�
1
� η � dδ

�
k

dη
� 3

2

δ
�
k

η
�
1
� η � � (14)

This has a growing mode solution of δ ∝ 1
� �

3 � 2 � η and a decaying mode solution. So
these fluctuations cannot grow until η $ 1.

So linear perturbations do not grow if η " 1 that is before the matter-radiation
equality. Basically the universe expands so fast then that matter has little chance to
collapse. This is also known as the Mészáros effect (Mészáros 1974).

1.3 Scales larger than c % H
Crudely speaking, one can treat the very large scale perturbations as separate homoge-
neous universes. We can use the evolution of

�
Ω � 1 � 1 � that we derived earlier for this

case. We have that,
�
Ω � 1 � 1 � ∝ � 1 � ρR2 � which is proportional to

�
1
�

z �&� 1 for matter
dominated and to

�
1
�

z �&� 2 for radiation dominated case. So, δ which is proportional
to
�
Ω � 1 � 1 � grows as δ ∝ R for matter dominated and δ ∝ R2 for radiation dominated

case.
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1.4 Zel’dovich Approximation

It is reasonable to assume that only the growing mode is present with some significant
amplitude at present time, since as we will see later that the fluctuations at the epoch of
recombination were small. Then equation ( ??) can be rewritten (after summing over
all Fourier modes)

δ
� �x � t ��� D

�
t � δ0
� �x � � (15)

where D denotes the growing mode (for Ω � 1, D
�
t � ∝ R ∝ t2 � 3 and so on) and δ0 some

initial perturbation. So, the density field self-similarly in time. It turns out that the
gravitational acceleration and the peculiar velocity also evolves self-similarly. If we
substitute the above equation into the Poisson equation, we have,

φ
� �x � t ��� D

R
φ0
� �x � � (16)

where
∇2φ0 � 4πG

�
ρR3 � δ0

� �x �'� (17)

Now, the linearlized form of Euler’s equation (neglecting the u2 terms) is, d �u � dt
�

2
�
Ṙ � R ���u �(� ∇xφ � R2, which can be written as d

�
R2 �u �
� dt �)� ∇xφ �)� � D � R � ∇xφ0.

This can be integrated to give, �u � �+* 1
R2

�
D
R

dt , ∇xφ0 � (18)

Since D solves the equation ( 7), we have d
�
R2Ḋ �
� dt � 4πGρDR2 � 4πGρcoD � R,

where we have written ρ � ρco � R3. This means that R2Ḋ � 4πGρco - D
R dt, so that we

can write for the peculiar velocity,�u �.� Ḋ
4πGρco

∇xφ0
� (19)

which on integration gives, �x �/�x0 � D
�
t �

4πGρR3 ∇xφ0 � (20)

This formulation of linear theory is due to Zel’dovich (1970, A&A, 5, 84), which
specifies the growth of structure by giving the displacement �x �0�x0 and the peculiar
velocity �u of each mass element in terms of its initial position �x0. Therefore it is a
Langrangian description.

To appreciate what it means, let us write it in a slightly different form, (in one
dimension)

x
�
t �	� x0

�
D
�
t � f � x0 � � (21)

which shows that the mass elements essentially go with the Hubble flow with some per-
turbations. The motion is like inertial motion and the distance travelled is proportional
to D
�
t � and the initial ‘kick’ f

�
x0 � . At t $ 0, the density can be found by using the

mass conservation law ρ
�
x � t � dx � ρ0dx0. One can find that the density, as a function

of the initial Lagrangian coordinate x0, is

ρ
�
x0
� t �	� ρ0

1 � D
�
t � α � (22)
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where α �1� d f
�
x0 �
� dx0. (In three dimension, this would mean taking the Jacobian

instead of the simple dx � dx0 and so d f
�
x0 �� dx0 would be a tensor in general, called

the deformation tensors. If this tensor is symmetrical, then one can find a coordinate
system in which it is diagonal, and so there would be three parameters like α here.)
This shows that at some time when D � 1 � α there would be infinite, and so this ap-
proximation in general predicts caustics. In 3 dimension, the deformation is largest
in the direction for which α is most negative, and so one expects flattened structures,
which were christened ‘pancakes’ by Zel’dovich.

As a matter of fact in 1 D, as long as different sheets of matter do not cross, Gauss’s
theorem shows that, �g ��� 1

R
∇xφ ��� 4πGρ

�
Rx0 � Rx � � (23)

which means that x � x0 � 1
4πGρR2 ∇xφ � x0 � D 2 t 3

4πGρR3 ∇xφ0
� which is equivalent to the

previous expression.
Zel’dovich proposed using this approximation until the trajectories cross, and this

has been shown to be an excellent approximation by numerical simulations. This is
used extensively to set up initial conditions for numerical simulations.

There is an interesting similarity between Zel’dovich approximation and geometric
optics, which leads to a similiarity between the pattern of light seen at the bottom
of a swimming pool and that of the large-scale structure in the universe. Consider
a horizontal, transparent plate illuminated from below (in the swimming pool, it is
illuminated by reflected light) by parallel rays. The plate has a flat base at the plane r �
0 and a smoothly varying thickness which is specified by thickness h � h

�
x � y � . When

the rays pass through such a plate they are deflected differently at different points. If
we denote the deflection angle by s and if it is small then the 2D coordinates of the ray
entering the plate at the point with coordinate �q � � q1

� q2 � depend on z as,�r � z � �q �����q � z �s � �q � � (24)

where si
� �q �4��� � n � 1 � ∂h 2 �q3

∂qi
, n being the refractive index, assumed here to be indepen-

dent of the wavelength. This is very similar to the expression for Zel’dovich approxi-
mation.

1.5 Jeans length

If we now include pressure, the continuity equation would read,

∂ �v
∂t
� � �v �∇ �
�v � � ∇φ � 1

ρ
∇p � (25)

The adiabatic sound speed is c2
s � � ∂p � ∂ρ � S, so that including pressure, the final

second-order equation would read,

d2δ
�
k

dt2
�

2
Ṙ
R

dδ
�
k

dt
�65 4πGρ � � csk � R � 2 7 δ�k � (26)

One defines the Jeans length as λJ � 2πR � kJ � cs 8 π � Gρm. So if the scale size of a
perturbation is larger than the Jean’s length, pressure gradients can be ignored and the
matter behaves like a pressure-less fluid as we have seen earlier. But if λ " λJ then
gravity can be ignored and the perturbations would oscillate like acoustic waves.
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In the standard cosmology, the universe recombines around z � 1000. After the
recombination, the relevant sound speed is the adiabatic sound speed of a monoatomic
gas, since photons are no longer coupled to matter. So, c2

s � 8 � 5kT � 3mp � , and so at
z � 1000 (T � 3000 K), we have λJ

� 3 9 1019 � Ωh2 �� 1 � 2 cm. The corresponding mass
Jeans mass is MJ

� � 4 � 3π � ρmλ3
J
� 1 � 3 9 106 � Ωh2 �� 1 � 2 M : . Notice that this mass

is close to that of globular clusters and it has been suggested that globular clusters
are the first objects to collapse after recombination, although there are other possible
astrophysical origins of globular clusters.

Before the recombination, photons are tightly coupled to matter through Thomson
scattering and the adiabatic sound speed is cs � � c �<; 3 � �� 3 � 4 � � ρm � ργ � � 1 � � 1 � 2. (This
follows from the fact that c2

s � 4
3

p
ρ , where p � 1

3 ρc2 and ρ � ρm
� ργ.) As ργ � ρm

��
z � 42000 � � Ωh2 �
� 1, so that just before recombination, one has cs

� � c � 10 � � Ωh2 �� 1 and
the Jeans mass is MJ

� 9 9 1016 � Ωh2 �� 2 M : . So before decoupling, perturbations on
scales smaller than supercluster scales oscillate like sound waves.

1.6 Silk damping

Although photons and electrons are tightly coupled before recombination, the coupling
is not perfect and this leads to damping of perturbations, which is called the Silk damp-
ing. Instead of solving the Boltzmann’s equation, we will simply estimate the Silk
damping scale. Since the damping is caused by free-streaming of photons out of the
overdense regions, we need to calculate the mean free path of photons, which is,

λγ � 1
XeneσT

� 1 � 3 9 1029X � 1
e R3 � ΩBh2 � � 1 cm � (27)

where Xe is the ionization fraction. For perturbations of size λ =� λγ, the perfect fluid ap-
proximation breaks down, and photon streaming would damp such perturbation. Now,
in a time ∆t a photon suffers N � ∆t � λγ

�
t � collisions and so undergoes a random walk

characterized by a mean coordinate distance ∆r where,�
∆r � 2 > N

λγ
�
t � 2

R
�
t � 2 > ∆t

λγ
�
t � λγ
�
t � 2

R
�
t � 2 � (28)

The total coordinate distance travelled until the time of decoupling is,

λ2
S � � tdec

0
dt

λγ

R2
�
t � � 3

5

tdecλγ
�
tdec �

R2
dec

� (29)

since R ∝ r2 � 3 during the matter dominated decoupling era. Using a value of Xe
� 0 � 1

around
�
1
�

zdec ��� R � 1
dec � 1100, one has,

λS � 3 � 5 � Ω0 � ΩB � 1 � 2 � Ω0h2 � � 3 � 4 Mpc

MS � 6 � 2 9 1012 � Ω0 � ΩB � 3 � 2 � Ω0h2 � � 5 � 4 M :?� (30)

This scale is close to that of clusters.
If there are nearly collisionless components in matter there would be free streaming

of this components and that would also damp perturbations. Once a species decouples
from plasma, it travels in free fall in the expanding universe. If we choose the motion
of the particle to be radial then the motion of the particle is R

�
t � dr � v

�
t � dt. We are

interested in free-streaming just before the growth of perturbations take place, that is
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before teq. The comoving free-streaming scale just before the matter radiation equality
is,

λFS � � teq

0

v
�
t � �

R
�
t � � dt � � � tNR

0

c
R
�
t � � dt � � � teq

tNR

v
�
t � �

R
�
t � � dt � � (31)

where we have split the integral into two, when in the relativistic regime v � c and the
non-relativistic regime. Since the particle is freely propagating, p � mv ∝ R � 1 and so
v ∝ R � 1 in the non-relativistic regime. So,

λFS
> 2c

tNR

RNR

� � teq

tNR

cRNR

R2
�
t � � dt � � (32)

where we assumed that the universe is radiation dominated when the particle in con-
sideration is relativistic (tNR # teq), which is true for most cases. In the radiation dom-
inated era, t � tNR

�
R � RNR � 2 and so,

λFS � � ctNR � RNR � � 2 � ln
�
teq � tNR �@�'� (33)

A particle X becomes non-relativistic when kBTX
> mX c2 � 3, and for weakly interact-

ing particles TX is likely to be smaller than T , the photon temperature. So, one has,
RNR
� 7 9 10 � 7 � keV � mX � � TX � T � and so, tNR

� 1 � 2 9 107 � keV � mX � 2 � Tx � T � 2 sec and
teq � tNR

� � mx � � 17
�
Ω0h2 � � TX � T � eV �@� 2, and finally,

λFS
> 0 � 2Mpc

�
mX � keV � � 1 � TX � R � � 2 � ln

�
teq � tNR �'� (34)

Now, for a two component fermion species we have,

ΩX �(* mnx

ρc
, 0 �(* mnγ

ρc
, 0 nx

nγ
� 30 * mx

1keV
, nx

nγ
h � 2 � 30 * mx

1keV
,A* Tx

T
, 3h � 2 � (35)

So we can write,
λFS
� 30
�
Ωxh2 � � 1 � Tx � T � 4 Mpc � (36)

where we have put teq � tNR � 3.
For a light neutrino, Tν � T � 0 � 7 and so,

λFS B ν � 20Mpc
�
mν � 30eV � � 1 � (37)

corresponding to a mass of 4 9 1014 � mν � 30eV �� 2 M : (since, M
�
λ � � 1 � 5 9 1011M : � Ω0h2 � λ3

Mpc

and Ωνh2 � mν � 91eV . More accurate calculations would have given us something like
40 Mpc.

The free-streaming mass can be written in terms of fundamental quantities as MFS B ν >
m3

PL � m2
ν, which happens to be the same form as for the Chandrasekhar mass, with

mN C mν!
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1.7 The processed final spectrum

We are in a position now to discuss the final spectrum of matter fluctuation in the
universe, after evolving the initial perturbations. We will first consider perturbations in
dark matter, and then consider the fate of the baryons.

Let δk
�
ti � be the amplitude of perturbation corresponding to some wavenumber

k ∝ λ � 1 and a mass M ∝ λ3 ∝ k � 3 at some initial instant ti. We would like to find
out the value of δk at some later time as they cross the horizon and grow in time.
Firstly, free streaming will wash out perturbations at scales smaller than λFS. Then we
consider perturbations of comoving wavelength λFS # λ # λeq where λeq is the horizon
size at zeq. These modes have scales which are equal to c � H before zeq and do not
grow until zeq. Thus for these perturbations δ

�
z �D� δ

�
zeq � � 1 � zeq � � δ

�
zcross � � 1 � zeq � .

Perturbations with λ $ λeq (zcross # zeq) have δ
�
z �4� δ

�
zcross � � 1 � zcross �4� δ

�
zcross � � 1 �

zcross � 1 � zeq � � 1 � zeq � . Here, Rcrossλ
�
∝ λt2 � 3

cross �E� ctcross, so tcross ∝ λ3. Also, since�
Req � Rcross �	� � teq � tcross � 2 � 3, one has

�
Req � Rcross � � λcross � λ � 2. So, finally,

δ
�
z �	�GFH I 0

�
λ # λFS �

δ
�
zcross � � 1 � zeq � �

λFS # λ # λeq �
δ
�
zcross

�
1
�

zeq � � λeq � λ � 2 �
λeq # λ � (38)

So, for perturbations with λ # λeq (zcross $ zeq) lose out on growth, and the final per-
turbation spectrum has a break at a scale given by kbreak where zcross � zeq.

We can evaluate zcross as a function of the scale 1 � k using,

R
�
t �

k
� 1�

1
�

zcross � k � ct � c�
1
�

z � 2 J 3
32πGρr0

� (39)

where we have used the radiation dominated formula and where ρr0 is the radiation
density at present epoch and is well known from CMBR measurements. This means
that,

kbreak ∝
ρm0

ρr0
c � 1 K 32πGρr0

3
∝ Ωm0h2 � (40)

We will discuss the fluctuations at different scales in terms of the power spectrum
P
�
k �D� ! δk

! 2. We therefore find that there is going to be a first break of the spectrum
at λFS, which depends on whether or not particles like neutrinos dominate the dark
matter. If they do, then the spectrum has a sharp peak around λFS. Other than that,
there is a mild break at λeq. At a given time, the last line of the equation ( 38) shows
that, as the wavelength decreases, δ increases. This happens till λ � λeq. Below this
scale, δ is a constant, as these correspond to scales which crossed the horizon before teq

and did not grow much. In reality, there is some growth, and δ increases only slightly
as λ is decreased further.

Suppose the amplitude at a given time t, δk
�
z � ∝ kn � 2. Since outside the horizon, the

perturbations grow as R2 ∝ k � 2, at the time of horizon crossing, the amplitudes would
be δk

�
zcross � ∝ k � 2 L n � 2 � k � α where α � 2 � n � 2.

The total density contrast at any location will be a superposition of modes with
different wavenumbers,

δ
� �x � z � ∝

�
d3 �kδ
�
k

�
z � exp

�
i�k �M�x �N� (41)
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The power of such perturbations is measured by
!
δ
� �x � z � ! 2. So, modes in the range� �k � �k � d3 �k � contribute an amount proportional to d3 �k ! δ�k ! 2 to

!
δ
� �x � z � ! 2. This contribu-

tion can be written as d3 �k ! δ�k ! 2 � k2dk
!
δk
! 2 � d

�
lnk � � k3 ! δ�k ! 2 � , and so each logarithmic

interval contributes an amount
�
k3 ! δ�k ! 2 � . At zcross this is ∝ k3 � 2α ∝ M2α � 3 � 1. This

shows that for α � 3 � 2 (that is, for n � 1) all scales have equal contribution. This
spectrum is scale-invariant and is predicted by some models of the early universe.

The final spectrum can be calculated numerically. For cold dark matter, for exam-
ple, the final power spectrum can be written as,

P
�
k ��� ! δk

! 2 � Ak�
1
� αk

� βk2 � 2 � (42)

where α � 8 � � Ωh2 � Mpc and β � 4 � 7 � � Ωh2 � 2 Mpc2. Note that this spectrum has a
break (a peak) at kbreak � 1 � 8 β � 0 � 46Ωm0h2 Mpc � 1. The parameter combination Ωh
which controls the shape of P

�
k � is often called Γ and the best fits to observations of

large scale structure suggest that Γ > 0 � 3
The story of baryons is somewhat similar. Firstly, scales smaller than the Silk scale

is inhibited. Then, as photons are tightly coupled to baryons till tdec, the perturbations
do not grow until that time. Notice that dark matter perturbations start growing at teq, so
that at decoupling the density contrast δ for dark matter is larger than that of baryons,
by a factor Rdec � Req

� 21
�
Ωh2 �� 1. After this epoch, the baryonic perturbations are

driven by the already existing dark matter perturbations. For this coupled perturbation,
one can write,

d2

dt2 δB
�

2
Ṙ
R

d
dt

δB
> 4πGρDMδDM � (43)

Since δDM ∝ R, after tdec for Ω � 1, this gives a growing solution for δB � δDM
�
1 � A

R �
where A is a constant. This means that δB C δDM for R O A. So, after decoupling the
baryons and dark matter perturbations grow together.

1.8 Comparison with observations

1.8.1 Correlation function and power spectrum

We have defined the density perturbations as

δ
� �r �	� ∆ρ

ρ
� � 2π � 3 � 2

V 1 � 2 ∑δkei

�
k P �r � (44)

where V is the volume of a box with periodic boundary conditions. The two-point
correlation function of the density is given by,

ξ
� �r ��� Q δ � �r ��� δ � �r � � �r �@R�S�� � 2π � 3

V ∑∑δkδ Rk � Q ei

�
k P �r � e � i

�
k � P 2 �r � L �r 3 S� �

2π � 3
V ∑

!
δk
! 2e � i

�
k P �r � (45)

The spacing of the k’s in the sum is given δkx � 2π � Lx, where Lx is the length of the box
in x, we have ∆kx∆ky∆kz � � 2π � 3 � V . The power spectrum is defined as P

�
k ���TQ ! δk

! 2 S ,
which has the units of length3. We then get,

ξ
�
r ��� �

P
�
k � e � i

�
k P �rd3 �k � � P

�
k � k2dk

�
e � ikr cosθdΩ� P

�
k � k2dk2π

�
e � ikrµdµ � 4π

�
k2P
�
k � sin

�
kr �

kr
dk � (46)
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Note that this equation also shows that the power spectrum is the transform of the
correlation function. Since �

ei

�
k P �rd3r � � 2π � 3δ3 � �r � � (47)

where the last factor is a Dirac delta function, not the density contrast, we have,�
d3kP

�
k � ei

�
k P �r � ξ

�
r �'� (48)

For the above CDM power spectrum one finds the correlation function to be pro-
portional to

ξ
�
r � ∝

�
k2P
�
k � sin

�
kr �

kr
dk

∝ Γ4
� κ3�

1
� α � κ � β � κ2 � 2 sin

�
κΓr ��

κΓr � dκ� Γ4F
�
Γr � � (49)

with k � κΓ, where

F
�
x �	� � κ3�

1
� α � κ � β � κ2 � 2 sin

�
kx �

kx
dκ � (50)

Observations suggest that ξ
�
r ��� 1 for r � 5h � 1 Mpc, and that ξ

�
r � ∝ r � 1 P 77. One

finds that to match this one needs Γ � 0 � 3.
We need to have more quantitative measures of the perturbation field before we

can compare with observations. Let us assume that the linear density field δ
� �x � t � is

Gaussian. We define a smoothed density field δs
� �x � rs
� t � by convolving δ

� �x � t � with a
window function W

�
x � ,

δs
� �x � rs
� t ��� � δ

� �x � � t � W �! �x �U�x � ! � rs � d3x � � � 2π � 3 � 2
V 1 � 2 ∑W̃

�
k � δ�kei

�
k P �x � (51)

where the last step follows from the series expansion of δ. The Fourier transform of
the window function is

W̃
�
k �	� � d3xW

�
x � ei

�
k P �x � (52)

and the normalisation condition is,

W̃
�
0 �	� � d3xW

�
x �	� 1 � (53)

One example of the window function is the top hat function for which W
�
x �V� 1 � Vs for

x W rs and 0 for x $ rs. This function has a sharp edge at rs. The Fourier transform of
this function is,

W
�
krs ��� 3 5 sin

�
krs ��

krs � 3 � cos
�
krs ��

krs � 2 7 � 3
krs

j1
�
krs � � (54)

where j1 is the spherical Bessel function. The variance (mean square value) of the
smoothed density contrast is,

∆2 � rs
� t ��� � Q δs

� �x � 2 S	� � 2π � 3
V ∑W̃

�
k � 2 ! δ�k ! 2� �

d3kW̃
�
k � 2P
�
k �'� (55)
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Note that this is dimensionless and can also be written as,

∆2 � rs
� t ��� � d3r1d3r2W

� �r1 � W � �r2 � ξ � �r1 �X�r2 �'� (56)

Consider the integral,

J3
�
R ��� 1

4π

� R

0
d3 �rξ
� �r ��� � R

0
r2drξ

�
r �� 4π

� R
r2dr
�

k2dkP
�
k � sin

�
kr �

kr
� (57)

This, on integration by parts, gives,

J3
�
r ��� 4πr3

3

� ∞

0
k2dkP

�
k � W̃s
�
kr � � (58)

where W̃s
�
kr � is the transform of a top hat window function. This means that,

J3
�
r �	� 4πr3

�
k2dkP

�
k � 5 sin

�
kr ��

kr � 3 � cos
�
kr ��

kr � 2 7 > 4πr3

3

� r Y 1
0

k2dkP
�
k � � (59)

where we have ignored the contribution from wavelengths smaller than r. The expres-
sion in the square brackets has the value 1 � 3 for kr " 1.

We would like to compare this with the fluctuation in mass within the volume Vs of
the window function. The variance in mass distribution is essentially

∆2 � r �Z� �
d3kW̃

�
k � 2P
�
k �	� 4π 9 9

�
k2dk 5 sin

�
kr ��

kr � 3 � cos
�
kr ��

kr � 2 7 2P
�
k �> 4π

� r Y 1
0

k2dkP
�
k � � (60)

so that we have,

∆2 � r ��� Q � δM � M � 2r S > 3J3
�
r �

r3 � (61)

Thus the integral J3
�
r � is a direct measure of mass fluctuation in the scale r.

The observed ξ has a cutoff at a lengthscale of � 30h � 1 Mpc. Evaluating the
integral J3 for such a function, one finds J3

� 100h � 3 Mpc3, which is consistent with
surveys like CfA (Davis & Peebles 1983).

It has become conventional to talk about the rms amplitude of the fluctuations mea-
sured in spheres of radius rs � 8h � 1 Mpc, which is denoted by σ8. This is because
early estimates of the two-point galaxy correlation function (e.g., Davis & Peebles
1983) from CfA survey suggested that σ8

� 1 for optically selected galaxies. How-
ever, galaxies may not be clustered in exactly the same way as the mass. It is possible
that fluctuations in the galaxy distribution is proportional to fluctuations in the mass
distribution, �

δρ � ρ � g � b
�
δρ � ρ � ρ � (62)

where b is a constant, called the ‘biasing factor’.
For example, from COBE data one estimates σ8 for the standard CDM to be 1 � 2

(Bunn & White 1996). If the biasing is linear, then ξρ � b2ξg and Pρ
�
k �E� b2Pg

�
k � ,

which means that σρ
�
rs � > 1 � b for rs � 8h � 1 Mpc. Note that the observed correlation

function mentioned earlier is the galaxy-galaxy correlation function.
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This ‘biased’ galaxy formation scenario essentially means that light may not always
trace mass, since there may be galaxies that are either too faint to be seen or never lit
up. The idea of biased galaxy formation relies upon some of the fundamental statistical
properties of the density field itself. Consider the density field smoothed with a top hat
window function of radius rs which is appropriate for a galaxy

�
rs
� 1 Mpc), with rms

variation given by ∆
�
rs �	� � δM � M � g. The probability of having a density contrast δ at

a given point in space is proportional to exp
� � δ2 � 2∆2 � if the field is Gaussian. In some

regions of space the value of δ will exceed ∆, which means that some galactic sized
perturbations are particularly overdense. These perturbations will obviously collapse
and form galaxies before the more common-sized perturbations (say, those with δ � ∆).
Crudely speaking, the 3σ high-density peaks (δ � 3∆) grow into galaxies first, then the
2σ peaks and so on. Different sized perturbations can be labeled by ν � δ � ∆. Now,
it turns out that the correlation function is proportional to ν2, that is, galaxies that
form form higher density peaks are more strongly correlated than galaxies from lower
density peaks, or, in general, from the underlying mass density field itself.

To understand this, consider a sinusoidal wave with wavelength λ � Mpc, whose
amplitude varies in space and is distributed about the mean value δ with a Gaussian
distribution. Regions with amplitude values which are much greater than δ are very
rare. Now imagine superimposing this wave on a longer wavelength sine wave. Sta-
tistically it will now be easier to exceed a given threshold in amplitude, say νrh O 1
by riding on one of the crests of the longer wavelength perturbation, and so peaks that
exceed the threshold νth will be preferentially found on the crests of the underlying
longer wavelength wave. So the high density peaks will be strongly clustered.

One down-to-earth analogy is that of clustering of mountain peaks. Mountains of
height more than 25000 ft are strongly clustered in the Himalayas.

So, if the galaxy formation process requires that there is a threshold ν for forming
bright galaxies, then the correlation function ξg found from bright galaxies will be ν2

th
times the correlation function of the underlying mass density. This is basically the
biased galaxy formation scenario. One therefore has a parameter, b the biasing factor,
to fit the observed correlation function or the power spectrum to the theoretical values
or to the COBE normalization (which depends on the underlying mass fluctuation at
much larger scales than where galaxy formation processes matter).

The power spectrum of galaxy distribution has been determined from different red-
shift surveys. In general one finds that if one normalizes the CDM power spectrum at
small scales, it cannot fit the observed spectrum at large scales. If one normalizes it
with COBE (see below) then one overproduces small scale structure, which means that
if CDM is correct that there must be some hidden population of nearby galaxies. One
also finds that an open universe or a universe with non-zero cosmological constant fits
the data best. One intriguing feature of the recent Las Campanas survey is the spike in
the power spectrum around 100h � 1 Mpc scale. It is still an open question whether or
not it really exists and if so what causes it.

1.8.2 CMBR anisotropy

Sachs and Wolfe (1967, ApJ, 147,73) showed that a gravitational potential perturbation
produces an anisotropy of the CMBR with an amplitude,

∆T
T
� 1

3
∆φ
c2
� (63)
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where ∆φ is perturbation in potential at the intersection of the line of sight and the last
scattering surface. The anisotropy is usually expressed in terms of spherical harmonics,

∆T
�
n̂ �

T
� ∑

l

l

∑
m [ � l

almYlm
�
n̂ �'� (64)

It is similar to Fourier decompositions of functions in flat space into since and cosines–
this is on a sphere. If there is only a dipole then the decomposition will be a delta
function at l � 1.

Since the universe is approximately isotropic, the probability densities for all m’s
for a given l are identical and also the expected value of ∆T

�
n̂ � is zero, and thus the

expected value of alm’s is zero. But the variance of alm is not zero and is defined as ,

Cl �TQ ! alm
! 2 SN� (65)

Here l � 180 \�� θ. It turns out that for a scale-invariant matter power spectrum (n � 1),
the radiation power spectrum is (Bond & Efstathiou 1987,

Cl � 4πQ2

5T 2
0

6
l
�
l
�

1 � � (66)

where Q2 is the variance of the l � 2 component of the sky. Since the number of
spherical harmonics contribuing to the anisotropy power at an angular scale θ is l

�
2l
�

1 � , this means that for a scale-invariant power spectrum, the anisotropy power at each
scale is equal. The COBE DMR experiment has found 8 Q Q2 SD� 18µK, and also that
Cl’s from l � 2 to l � 20 are consistent with the above prediction. For scale invariant
spectrum,

!
δk
! 2 ∝ k, so that the density fluctuations on a comoving scale L scale as

δρL ∝ L � 2, and the associated potential fluctuation on a physical scale λ � R
�
t � L are�

∆φ � λ � GδM
λ
� R2 � t � GρL2 which are independent of L. So, the temperature fluctuation

∆T � T is also independent of θ for a scale-invariant spectrum.
The angular correlation function of the anisotropy is given by

C
�
θ ��� Q ∆T

�
n̂ � ∆T

�
n̂ � �

T 2
0

� 1
4π ∑

l

�
2l
�

1 � ClPl
�
cosθ � � (67)

where Pl is a Legendre polynomial.
Let us try to find out the connection between the matter power spectrum and Cl

so that we can normalize the matter power spectrum. We have from the last line of
equation ( 6) that,

φk � � 4πGρR2δkk � 2 � (68)

The correlation function for the potential fluctuations can be written as,

Cφ
�
r �	� 4π

�
k2φ2

k
sin
�
kr �

kr
dk � 64π3G2ρ2R4

�
P
�
k � k � 2 sin

�
kr �

kr
dk � (69)

For super-horizon scale perturbations, ρR2δ is constant and we can write it as ρcrit
�
t0 � δ � t0 �

for a Ω � 1 universe. Using ∆T � T � φ � 3c2 gives the ∆T � T correlation function at t0
as,

C
�
θ �	� Cφ

�
r �

9c4 � π * H0

c
, 4 � P

�
k � k � 2 sin

�
kr �

kr
dk � (70)

Here r � 2RLS sin
�
θ � 2 � and RLS � � 2c � H0 � � 1 � 1 � ; 1

�
zLS � is the comoving radius of

the surface of last scattering.
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The expansion of a plane wave into spherical harmonics,

ei

�
k P �r � 4π

∞

∑
l [ 0

il jl
�
kr � l

∑
m [ � l

Y Rlm � θ � φ � Ylm
�
θ � φ �� ∞

∑
l [ 0

il
�
2l
�

1 � jl � kr � Pl
�
cosγ � � (71)

Here jl
�
x � is a spherical Bessel function,

�
θ � φ � is the direction of �r,

�
θ � � φ � � is the

direction of �k and γ is the angle between the two directions. The density correlation
between two points �r1 and �r2 which are both situated on the last scattering surface is
(
! �r ! � RLS, where RLS is the comoving radius of the last scattering surface),

ξ � Q δ � �r1 � δ � �r2 �^] ast S�� � 2π � 3
V ∑

k
∑
k � δkδ Rk � Q ei

�
k P �r1 � e � i

�
k � P �r2 S� �

2π � 3
V ∑

k

!
δk
! 2ei

�
k P �r1 � e � i

�
k � P �r2� �

2π � 3
V ∑

k

!
δk
! 24π

∞

∑
l [ 0

il jl
�
kRLS � l

∑
m [ � l

Y Rlm � θ1
� φ1 � Ylm

�
θ � � φ � �9 4π

∞

∑
l � [ 0

il � jl � � kRLS � l �
∑

m � [ � l � Y Rl � m � � θ2
� φ2 � Ylm

�
θ � � φ � � (72)

We will convert the sum over k into an integral, which will include an integral over�
θ � � φ � � which will force l � l � and m � m � since,�

Ylm
�
θ � � φ � � Y Rl � m � � θ � � φ � � dΩ � � δll � δmm � � (73)

and so we will get,

ξ � � k2P
�
k � 5 4π

∞

∑
l [ 0

j2
l
�
kRLS � 4π

l

∑
m [ � l

Y Rlm � θ1
� φ1 � Y Rlm � θ2

� φ2 � 7 dk � (74)

But the sum of spherical harmonics is

4π
l

∑
m [ � l

Y Rlm � θ1
� φ1 � Y Rlm � θ2

� φ2 ��� � 2l
�

1 � Pl
�
cosγ � � (75)

and so,

ξ � 4π
∞

∑
l [ 0

�
2l
�

1 � Pl
�
cosγ
�

k2P
�
k � j2

l
�
kRLS � dk � (76)

We get the correlation function of temperature by multiplying as before by * 4πGρR2

3k2c2 , 2 ��
1 � 4 � � H0 � c � 4k � 4 and get,

C
�
γ �	� π * H0

c
, 4 ∞

∑
l [ 0

�
2l
�

1 � Pl
�
cosγ � � k � 2P

�
k � j2

l
�
kRLS � dk � (77)

which readily gives the angular power spectrum (using equation ( 67)),

Cl � 4π2 * H0

c
, 4 � k � 2P

�
k � j2

l
�
kRLS � dk � (78)
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For a power spectrum of type P
�
k �	� Ak one gets for the quadrupole,

C2 � 4π2 * H0

c
, 4A
�

P
�
k � j2

2
�
kRLS � dk

k
� 4π2 * H0

c
, 4A
�

j2
2
�
x � dx

x
� π3

3
* H0

c
, 4A � (79)

So from the measurement of C2 (from Q) one can normalize the power spectrum.
Roughly the anisotropy of the CMBR is of order ∆T � T � ∆φ � c2 � v2

c � c2 where
v is the velocity dispersion in the perturbation. For a typical cluster of comoving
size � 5 Mpc, vc

� 1000 km/s. Also, a comoving scale L at z O 1 subtends an an-
gle θ � � L � Mpc � � Ω0h � arcminutes. So that a typical cluster would produce a tem-
perature fluctuation of order 10 � 5 at an angular scale of 5 � . COBE has determined
the fluctuations at a much larger scale, but the values are consistent with the predic-
tions from the idea that structures form from gravitational instability. There are many
other experiments going on at present and planned for future to probe the fluctua-
tions at various scales—a nice place to look at for an introduction to these experi-
ments is http://www.hep.upenn.edu/ max/index.html, and for theory, have a look at
http://www.sns.ias.edu/ whu/physics/physics.html.

1.8.3 Variations on the CDM theme

Since CDM cannot exactly fit the observations , although it remains an attractive model
since it provides more or less the correct shape of the spectrum, a few variations of the
CDM have turned up recently. One talks of Mixed Dark Matter (MDM) in which one
mixes abit of hot dark matter ( � 10% to 30%), to get the power at large scales while
keeping enough CDM for the small structures. One also talks of a tilted CDM, for
which n deviates slightly from unity, essentially to decrease the power at small scale.
And then one talks of a non-zero Λ universe. If most of the contribution to Ω � 1
comes from the Λ term, then the lower Ω leads to lower matter density, which means
that it would take longer for the universe to reach the matter-radiation equality, which
gives the universe more time to wash out small scale fluctuations. (Note that this is
also achieved by lowering the value of H0 and a value of h � 0 � 3 can fit the data very
well indeed.) For such a Λ-universe, the age is larger for a given H0, which also helps
in solving some problems like ages of globular clusters. This is why a Λ- universe has
become very attractive these days (notwithstanding the recent results from the SN 1a
searches at high redshift).

1.8.4 Clusters of galaxies

Observations of galaxy clusters provide a number of clues for the cosmological param-
eters in the context of structure formation. For example, the fact that substructures are
seen in clusters argue against low value of Ω since it means that formation of clusters
is still ongoing or at least have terminated recently. The formation epoch of clusters
is also a strong constraint— one does not expect much clustering at high redshift in
CDM type models. So the recent findings that clustering can be high at z � 2–3 can go
against CDM models, although one should remember that in a biased galaxy formation
scenario, the galaxies which form first are necessarily from very high density peaks
and which are strongly correlated.

Identifying the cluster formation epoch is not a straightforward task. One finds
substructures in nearby clusters, which show that they are still accreting material. In
that case the formation of cluster is still going on. But then there are evidences that
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substructures existed even as far back as z � 0 � 9 (Postman et al.1996, AJ, 111, 615)
which look much like the core of Coma cluster now.

Observations of the hot intra-cluster medium (ICM) which emits X-rays (with tem-
peratures of 0 � 5–5 keV provides some constraints on the formation epoch of clusters.
The origin of the ICM is still unclear though. It is probably a mixture of leftover gas
that did not get incorporated into any galaxies, or gas that was driven out of galaxies
by supernovae or tidally liberated gas from galaxies. The ICM is also highly enriched
with metallicities of order 0 � 5 Z : which shows the dominance of material processed
within galaxies and later driven out.

If the ICM is heated to the virial temperature by the cluster potential then obser-
vations of the evolution of the X-ray luminosity function of clusters as a function of
redshift can reveal the epoch of cluster formation. This is being done now with the help
of data from ROSAT and ASCA. One can now find X-ray emission from clusters even
at z � 1 (Hattori et al.1997). The Chandra X-ray Observatory (to be launched in 1999
Spring) will have enough sensitivity to go further in redshift.

There are other aspects of clusters which serve as constraints on structure formation
models. Zabludoff & Geller (1994) and Crone & Geller (1995) claim that one can
constrain the structure formtaion model with the observation of abundance of clusters
with a threshold value of velocity disperson, and models that fit the data best have
either Ω � 0 � 2 or is a biased Ω � 1 model.

1.8.5 High redshift galaxies

Recent observations with both ground based telescopes and HST have discovered galax-
ies at high redshifts (z � 5). With the help of the Lyman break in the galactic spectrum
which gets shifted to different bands depending on the redshift, one can identify high
redshift galaxies by observing a field in different bands and comparing the pictures in
different colours. Steidel et al.(1996, ApJL, 462, L17) first discovered with ground
based observations a bunch of star-forming galaxies at z � 3, and several discoveries
soon followed. Then the observations of the Hubble Deep Field (North, and now also
South) yielded several galaxies at high redshift. Lanzetta et al.(1996, Nature, 381,
759) claimed that the reddest objects in HDF(North) have redshifts z $ 6, although the
confirmation would need spectroscopic data.

A few things are clear: (1) The top down scenario of a neutrino dominated model
is ruled out as one does not expect such high abundance of high redshift galaxies in
that model. (2) The Morphology of high z galaxies gives the impression that galaxy
formation occurs via merging of small subunits, which is a confirmation of the idea
of hierarchical structure formation models. (3) Mo and Fukugita (1996, ApJL, 467,
L9) have argued that to reproduce the abundance of Lyman-break galaxies one needs a
Λ-dominated universe.

To understand the last point, one needs a quantitative measure of the abundance
of objects in a given structure formation model, and this is provided by the Press-
Schechter mass function. Press & Schechter (1974) derived an expression for the mass
function assuming that non-linear clumps could be identified as overdensities in the
linear density field. They argued that if the overdensity at any point exceeded a critical
threshold δc when smoothed with a top-hat filter of radius rs (at some epoch zi), then a
mass element would would be incorporated in a non-linear object of mass M or greater
by some epoch z, where M � � 4π � 3 � ρaverager3

s . To be precise, δc is a function of the
epoch z at which one wants to determine the mass function and zi. If the density field
is assumed to be Gaussian, then the probability that the density field will have a value
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δ at any chosen point is given by,

P
�
δ � t ���_* 1

2π∆2
�
rs
� t � , 1 � 2 exp *� δ2

2∆2
�
rs
� t � ,V� (80)

So from the above arguments, one can write the fraction of bound objects with mass
greater than M as,

F
� $ M �Z� � ∞

δc 2 t B ti 3 P � δ � rs
� ti � dδ � 1; 2π

1
∆
�
rs
� ti � � ∞

δc

exp * � δ2

2∆2
�
rs
� ti � ,� 1

2
erfc *� δc

�
t � ti �; 2∆ 2 rs
� ti � , � (81)

where erfc
�
x � is the complementary error function. The fraction of the mas density in

non-linear objects of mass M to M
�

dM is given by the derivative of F
� $ M � , that is

f
�
M �E� � ∂F � ∂M � . The comoving number density N

�
M � t � can be found by dividing

this expression by M � ρ and one gets,

N
�
M � t � dM ���+* ρ

M
,A* 1

2π
, 1 � 2 * δc

∆
,A* 1

∆
d∆
dM
, exp *� δ2

c

2∆2 , dM � (82)

One can easily determine this given the structure formation model, that is the power
spectrum and the window function.

There is a problem though with this mass function. Although the integral of f
�
M �

over M should give unity, the expression above for f
�
M � yields 1 � 2 after integrating,

that is, - ∞
0 f
�
M � dM � 1 � 2. This is because we have not considered the underdense

regions correctly. Consider a region with δ # δc. There is a non-zero probability that
such regions would have δ $ δc when the density field is smoothed with a window with
rs1 $ rs. These points should also correspond to regions with mass greater than M. But
the above mass function ignores these regions and so underestimates F

�
M � . Press &

Schechter (1974) solved this problem by multiplying the mass function by a factor of
2. So, the comoving number density of objects in the Press-Schechter model is given
by,

N
�
M � t � dM ��� * ρ

M
,`* 2

π
, 1 � 2 * δc

∆
,`* 1

∆
d∆
dM
, exp * � δ2

c

2∆2 , dM � (83)

This ‘fudge factor’ of 2 has, however, been justified in a more rigorous analysis by
Bond et al.(1991).

The critical contrast can be estimated in the spherical collapse model. Consider a
spherical shell containing mass M collapsing under gravity,

d2r
dt2 � � GM

r2
� (84)

and the solution is,

r � A
�
1 � cosη � t � B

�
η � sinη � A3 � GMB2 � (85)

This shell collapses to zero radius at η � 2π when the time is tc � 2πB. The mean
physical density within the shell is ρ � 3M � 4πr3, the mean density in the background
universe (for Ω � 1) is ρb � 1 � � 6πGt2 � , and the ratio gives the density contrast. At
η " 1, for small values of contrasts, the series expansion gives,

δ � ρ
ρb
� 1 � 3η2

20
� 3

20
* 12πt

tc
, 2 � 3 � (86)
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This shows that the density contrast extrapolated to t � tc in linear perturbation theory
is δc C 1 � 69.

Note that for a fluctuation power spectrum with a power law,
!
δk
! 2 ∝ kn, one has

∆2 � rs � ∝ r � 2 3 L n 3
s ∝ M � 2 3 L n 3�� 3 and, so

M2 f
�
M �

ρ
� K 2

π
δc

∆
! d ln∆
d lnM

!
exp
� � 1

2
δ2

c � ∆2 ��� n
�

3
6
K 2

π
νe � ν2 � 2 � (87)

where ν � δc∆ is the threshold in the units of the rms density fluctuation. So the mass
function has the same shape (with a hump at ν � 1) and the value of ν changes with
time, with the hump shifting towards larger mass scales with time. (Since ν ∝ M 2 n L 3 3�� 6,
one writes ν � � M � Mc � 2 n L 3 3�� 6 and identifies Mc as the characteristic mass scale where
the mass function steepens.

This characteristic mass scale, however, needs to be altered if one discusses galaxy
formation from dissipative baryonic matter. The PS formalism is correct only for col-
lisionless dark matter and does not take the constraint that baryonic matter needs to
cool in order to form galaxies (Rees & Ostriker 1977, MNRAS 179, 541). Peacock &
Heavens (1990, MNRAS, 243, 133) has taken this into account and showed that this
changes the mass function slope to M2 f

�
M � ∝ M 2 n L 3 3�� 6 L 2 � 3.

The Press-Schechter mass function has always been treated with some scepticism,
as it is yet to be tested in great detail in all regimes of mass. However, it seems to
perform quite well when compared with N-body simulations, at least for masses of
order M $ 1011M : .

At any rate, this mass function has been used to compare the structure formation
models with respect to abundance of galaxies at high redshift. One must remember that
the process of galaxy formation is a complicated one, involving heating and cooling of
gas due to various processes, and non-linear phenomena like shocks, and the lack of
understanding of these processes makes such constraints weak.

1.8.6 Peculiar velocities

To discuss the velocity field in linear perturbation theory, let us assume that the growing
mode dominates and write δ � A

� �x � D � t � , where D
�
t � is the growing mode solution of

the fluctuation. the the mass conservation equation is (equation ( 4)),

∇ �a�v ��� R
∂δ
∂t
��� Rδ

Ḋ
D
� (88)

Here ∇ is in the comoving frame and �v � R �u. Let us write the velocity field as the sum
of a part with no divergence and an irrotational part. The first part then plays no part in
the evolution of the density contrast in the conservation equation, and this component
decays as R � 1 from the Euler’s equation. The above equation is the Poisson equation
for the irrotational part and the familiar solution from electrostatistics is,�v � �x �	� R

4π
Ḋ
D

� �y �b�x! �y �b�x ! 3 δ
� �y � d3y � R f H

4π

� �y �b�x! �y �U�x ! 3 δ
� �y � d3y � (89)

where the dimensionless factor,

f � R

Ṙ

Ḋ
D
� 1

H
Ḋ
D
� (90)
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Comparing the Poisson equation (the last of equation ( 4)) with equation ( 88) and
remembering that the perculiar graviational acceleration �g �1� ∇φ � R, one can write
the peculiar velocity as, �v � f H

4πGρ
�g � 2

3
f

ΩH
�g � (91)

In an Ω � 1 universe, f � 1 and H � 2 � � 3t � and the peculiar velocity field has the
simple form, �v ���gt. For a spherical mass fluctuation, one has from (equation ( 89))

v
�
x �	��� R

f H
x2

� x

0
y2dyδ

�
y �	� � 1

3
f HRxδ � (92)

where δ
�
x � is the mass density contrast averaged within the radius x. The factor f

depends primarily on Ω and a useful approximation is that f � Ω0 P 6.
Since the peculiar velocity field depends on the density contrast and Ω, one can try

to match the observed velocity field with that derived from theory and try to constrain
the density contrast and Ω. Analysis with the local velocity field seems to indicate that
Ω � 0 � 3 (Dekel 1994 ARAA).

1.8.7 The intergalactic medium

Another interesting set of constraints comes from the study of absorption lines in the
spectra of QSOs. Firstly from the lack of any absorption trough shortward of the Ly-
man emission line in the QSO spectra, one can put some limits on the abundance of
neutral hydrogen (HI) in the intergalactic medium. For an Ω � 1 universe with a homo-
geneously distributed intergalactic medium (IGM) with neutral fraction f , the opacity
(the so-called Gunn-Peterson opacity) is,

τGP � 4 � 6 9 105ΩIGMh
�
1 � f � � 1 � z � 2 P 5 � (93)

The fact that τ # 0 � 1 at z � 4 means that, ΩHI # 2 9 10 � 8h � 1. This shows that the
universe was reionized at some epoch z $ 4.

However, with the recent results from numerical simulations, it is clear that in ad-
dition to reionization the fragmentation of the IGM also contributes to the lack of the
Gunn-Peterson absorption. Although there is no absorption trough, there are discrete
absorption lines, with a large range in the HI column densities. These are now thought
to arise (lines with HI column densities NHI # 1014 cm � 2) from small scale fluctu-
ations in matter. Therefore the study of these lines now provide important clues to
the process of structure formation. Recent works have focussed on the possibility of
recovering the power spectrum from observations. What they do is this: (1) find a
emperature evolution law from simple considerations of photoinoization heating and
cooling, (2) find a relationship between the HI content from photoionization equilib-
rium (nHI ∝ ρ2ΓHIT � 0 P 7 where ΓHI is the ionization rate) and the overdensity, and (3)
then a relation between the opacity (lack of flux) and the overdensity. This comes
out to be like τ ∝

�
ρ � ρ � 1 P 6 and the proportionality constant depends on the reioniza-

tion history, photoionization background and the cosmological parameters. Now, this
monotonic relation can be used to invert the observed spectra into giving the underly-
ing density (1D) field, which then can be used to get the power spectrum. Recently
Croft et al.have used 19 QSO spectra to recover the power spectrum and compare with
theoretical models. IGM constraints give the power spectrum at comoving scales of
k � 1–10 h Mpc � 1 where it cannot be probed by galaxy surveys. The power spec-
trum is consistent with CDM type models and favours either an open or a Λ dominated
universe.
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Absorption lines with large column densities
�
NHI $ 1020 cm � 2) are thought to

arise from galaxies (or protogalaxies) at high redshifts. They are called the Damped
Lyman-α systems. These lines are also associated with a number of metal lines, and
the metal abundance of such absorption systems as a function of redshift provides im-
portant constraints to the models of structure formation and galaxy evolution.
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