

On the detection of spectral ripples from the Epoch of Recombination

Mayuri Sathyanarayana Rao

Raman Research Institute Bangalore

Advisory Panel

- Chair Frank Briggs RSAA, ANU
- Supervisor Ravi Subrahmanyan RRI, India
- Advisor Brian Schmidt RSAA, ANU
- Advisor Charley Lineweaver RSAA, ANU
- COLLABORATOR Jens Chluba JHU, USA

<u>Plan of the talk</u>

• Introduction

• The Epoch of Recombination

• Motivation

• APSERa

• Thesis plan of action

What I mean by 'ripples'

Cosmic Ionization History

Cosmic Ionization History

A view of the universe

Galactic foreground: Synchrotron, thermal $(z \sim 0)$

Discrete radio sources: AGNs, Star-forming gal., normal gal. (z ~ 0-7) GIN

C

21-cm from the cosmic dawn, re-ionization (z ~ 6-15)

21-cm from the dark ages $(z \sim 15-150)$

CMB from recombination $(z \sim 1090)$

A view of the universe

Galactic foreground: Synchrotron, thermal $(z \sim 0)$

Discrete radio sources: AGNs, Star-forming gal., normal gal. (z ~ 0-7) SIL

C

21-cm from the cosmic dawn, re-ionization (z ~ 6-15)

21-cm from the dark ages $(z \sim 15-150)$

CMB from recombination $(z \sim 1090)$

The CMB spectrum

Thermalization

• Bremsstrahlung

$$e^- + X \leftrightarrow e^- + X + \gamma$$

• Compton

$$e^- + \gamma \leftrightarrow e^- + \gamma$$

• Double Compton

$$e^- + \gamma \leftrightarrow e^- + \gamma + \gamma$$

 $z_{\rm th} = z = 2 \times 10^6 \text{ or T} \approx 5 \times 10^6 \text{ K}$

Not a perfect blackbody!!

• Small distortions in CMB spectrum are allowed!

The Epoch of Recombination

- What is/was it? $- e^- + p^+ \rightarrow H + \gamma$
- When was it?
 - -HeIII \rightarrow HeII5000 $\leq z \leq$ 8000-HeII \rightarrow HeI1600 $\leq z \leq$ 3500-HII \rightarrow HI500 $\leq z \leq$ 2000

Beyond the surface of last scattering!

Cosmological Time in Years

<u>Conditions during Epoch</u> <u>of Recombination</u>

- z ~ 1400
- $T_e = T\gamma \sim 3815$ K
- $n_e = 500 \text{ cm}^{-3}$
- $n_{\gamma} = 1.1 \times 10^{12} \text{ cm}^{-3}$

<u>Conditions during Epoch</u> of Recombination

- $z \sim 1400$ • $T_{A} = \overline{RVON} - PHOTON RATIO$ LOW BARYON JACK
 - $n_e = 500 \text{ cm}^{-3}$
 - $n_{\gamma} = 1.1 \times 10^{12} \text{ cm}^{-3}$

- Recombination occurs at redshifts $z < 10^4$
- Thermalization not effective
- There should be some *small* spectral distortion due to the photons released during recombination!

Predicted recombination lines

Predicted recombination lines

To get a sense of scale

To get a sense of scale

WHY DO IT ?!

• Confront our detailed understanding

- Additional way to determine key parameters of the Universe
 - Pre-stellar Helium abundance!

• Thermal & Ionization history

<u>APSERa</u>

- Array of Precision Spectrometers for the Epoch of RecombinAtion — APSERa
- Array of 128 small telescopes
- 2-6 GHz range
- Radio receivers designed and built at the Raman Research Institute

http://www.rri.res.in/apsera

What we are looking for

<u>Challenges</u>

- It's a tiny signal
- Foreground estimation and subtraction • It's a broad signal
- Need to accurately model, estimate systematics -

Careful receiver design
Intelligent calibration scheme(s)
Choice of site — minimal RFI

<u>Thesis plan</u>

- Feasibility Study
- Potential of SKA
- Real-World Issues
- Prototype Design
- Prototype Deployment

<u>Time line</u>

- Feasibility Study -- Mid July 2014
- Potential of SKA -- End December 2014
- Real-World Issues -- End December 2015
- Prototype Design -- Mid July 2016
- Prototype Deployment -- March 2017

References