Stretched Exponential to Power Law Relaxation in Kinetically Constrained Models

Mustansir Barma

TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research, Hyderabad

Frontiers in Statistical Physics, RRI (December 2023)

Stretched Exponential to Power Law Relaxation in Kinetically Constrained Models

TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research, Hyderabad

Collaborators

- Puneet Pareek
- Sukanta Mukherjee (TU Dresden)
- Vaibhav Gupta (U Illinois, Urbana)
- Saroj Nandi

Slow Decays

Slow decays such as

- Stretched exponential $\varphi(t) \sim \exp\left[-\left(\frac{t}{\tau}\right)^{\beta}\right]$
- Power law $\sim t^{-\alpha}$

can arise from a variety of mechanisms, e.g.

• Conservation laws, Criticality, Hierarchical relaxation, Kinetic constraints, FDPO ...

Crossovers between the two forms occur in some cases.

Can we understand why?

Stretched Exponential to Power Law : Examples

Phys. Chem. Chem. Phys., 2002, **4**, 3734 (2002)

Stretched Exponential to Power Law : Models

We investigate the crossover in two models with kinetic constraints, and elucidate why it occurs.

• Domain walls to doublons

Bound states emerge as a function of time and change the pattern of decay

S. Mukherjee, P. Pareek, M. Barma, S. K. Nandi, <u>arXiv:2307.01801</u>

Domain walls in arrested states of a frustrated system
 Domain wall dynamics generates stretched exponentials.
 Ensemble averages generate power laws.

V. Gupta, S. K. Nandi, M. Barma, Phys. Rev. E (2020).

Domain Wall Dynamics

Kinetic constraint:

A spin can flip only if its neighbours are oriented oppositely

Spin flip \Rightarrow A domain wall (DW) steps right or left

DWs perform random walks with a hard core constraint: A simple exclusion process

What is the implication for the spin-spin autocorrelation function?

Spin Autocorrelation Functions with Conserved DWs

[J. L. Skinner, J. Chem. Phys, 1983; H. Spohn, Comm. Math. Phys., 1989]

A spin flips only if a DW crosses it.

How long does that take?

Prob (Domain length l)~ exp $(-l/\xi)$

Diffusion of DWs $\implies t \sim l^2$.

Thus expect $C(t) \sim exp - (t/\tau)^{1/2}$

Bounds on $1/\tau$ [H. Spohn, 1989] Upper Bound $\frac{1}{\tau} \le 2[\sqrt{\pi} (1 + \cosh \beta)]^{-1}.$

The Lower Bound is obtained through a variational process.

The DWD Model and the XOR-FA Model

 $DWD \equiv Domain Wall to Doublon$

[S. Mukherjee, P. Pareek, M. Barma, S. K. Nandi, ArXiv 2023]

 $XOR-FA \equiv XOR Fredrickson-Andersen$

[L. Causer, I. Lesanovsky, M. C. Banuls, J. P. Garrahan, PRE (2020)]

Both refer to the conserved DW model in the presence of a field $\sum S_i$.

The XOR-FA is model motivated by Rydberg atoms in their "facilitated" state: An atom changes its state only if a single neighbour is in the excited state.

The XOR-FA analysis focuses on DW trajectories and whether they bunch up.

The DWD analysis focuses on the spin autocorrelation function.

Doublons

Dynamics:

DWs perform biased random walks, with alternating easy directions.

Up-spin domains tend to shrink

⇒ Effective attraction between alternating pairs of DWs --- leads to the formation of doublons.

The change in the nature of excitation (DW to doublon) induces a change in the dynamics.

Diffusion of DWs and Doublons

Domain Walls perform biased random walks, with alternating easy directions.

$$v_{DW} = 1 - c$$

$$v_{DW} = \frac{1 + c}{2}$$
with

with
$$c = \exp(-2/T)$$

Doublons perform unbiased random walks, with a hard core constraint.

Size fluctuations decrease as $T \rightarrow 0$.

+++\$

 $D_{doublon} = \frac{c}{2}$

Macroscopic Number of Domain Walls

Observe a crossover to an asymptotic power law decay $\sim t^{-1/2}$.

At high T : The power-law decay is preceded by a stretched exponential. $C(t) \sim exp - (t/\tau)^{1/2}$ for $t < t_{cross}$

At low T : The power-law decay is preceded by a faster relaxation.

 t_{cross} is a non-monotonic function of temperature

As T increases, t_{cross} goes up as the bias vanishes.

As T decreases, t_{cross} goes up as most microscopic update attempts are unsuccessful.

Doublon - Dimer Mapping

In the low-temperature limit, a doublon \rightarrow a single up spin.

Hard core constraint of DWs \Rightarrow Minimum spacing of doublon spins= 2

This enables a mapping to dimer diffusion in 1D.

Autocorrelation function $\sim t^{-1/2}$

Quenching Frustrated Systems → Arrested States

The Axial Next Nearest Neighbor (ANNNI) model involves competing n.n. and n.n.n. interactions

 $\mathcal{H} = -J_1 \sum_i S_i S_{i+1} + J_2 \sum_i S_i S_{i+2}$

Frustration + Rapid cooling towards T=0 \Rightarrow Arrested states

space >

Conserved dynamics Moves: $\uparrow \leftrightarrow \downarrow \downarrow \leftrightarrow \uparrow \downarrow \leftrightarrow \downarrow \uparrow$ if the sign of J_1 is flipped Allow only energy-lowering or equal-energy moves

[D. Das, MB (1999)]

Dynamics in an Arrested State

Interestingly, several of the arrested states are dynamically alive.

Dynamics

 $T=0 \Rightarrow$ Energy-raising moves are not allowed

Find:

Domain walls perform random walks with interesting interactions

- Annihilation of domains with an even separation of DWs
- In steady state, only odd-separation domains remain
- Distance of closest approach = 3

Thus the *approach to steady state* involves *annihilation* of DWs

The *dynamics in steady state* involves conserved DWs with *exclusion*

Domain wall evolution

The Steady State

How many domain walls are there?

• Conservation law:

 $\uparrow\uparrow\leftrightarrow\downarrow\downarrow\Rightarrow$ Sublattice magnetization $M_{sub} = M_A - M_B$ invariant

- Random initial condition:
 - $\Rightarrow N_{DW} = M_{sub} \sim O(\sqrt{L})$ where L is the system size

Sub-extensive number of RWs \Rightarrow Important consequences

Correspondence to simple exclusion process: Every allowed configuration is equally likely Steady state static correlation

$$C_{SS}(r) \equiv \langle S_i S_{i+r} \rangle = \exp(-\frac{2r}{\sqrt{L}})$$

Approach to the Steady State

Coarsening

- After time t_w , equilibrium within patches of size $\mathcal{L}(t_w)$
- $C(r, t_w)$ obtained from $C_{SS}(r) = \exp(-\frac{2r}{\sqrt{L}})$ by replacing $L \to \mathcal{L}(t_w)$
- Even-domain disappearance is governed by diffusing, annihilating DWs $\Rightarrow \mathcal{L}(t_w) \sim t_w^{1/2}$

Conclude
$$C(r, t_w) = \exp(-\frac{Br}{t_w^{1/4}})$$

Dynamics in the steady state

Autocorrelation function

$$\varphi(t) \equiv \langle S_i(t_0)S_i(t_0+t) \rangle - \langle S_i(t_0) \rangle^2$$

Considered earlier for the exclusion process with a finite density of DWs

[J. L. Skinner (1983), H. Spohn (1989)]

Taking
$$\rho \sim \frac{1}{\sqrt{L}}$$
, obtain
. $\varphi(t) = \exp\left[-A\left(\frac{t}{L}\right)^{\frac{1}{2}}\right]$

An ultra-long *L*-dependent relaxation time

-- a "size-stretched exponential"

Ensemble Average

Consider performing quenches from completely disordered states, with differing N.

Ensemble average
$$q(t) = \left\{ \frac{1}{L} \sum_{i} < S_{i}(t_{0})S_{i}(t_{0} + t) > - < S_{i}(t_{0}) >^{2} \right\}$$
The distribution of N follows
$$P(N) = \sqrt{\frac{2}{\pi L}} \exp\left[\frac{-N^{2}}{2L}\right] \implies q(t) = \sqrt{\frac{2}{\pi L}} \int_{0}^{\infty} \exp\left[\frac{-N^{2}}{2L}\right] \exp\left[\frac{-A_{0}Nt^{1/2}}{L}\right]$$
Result:
$$q(t) = \exp\left[\frac{A_{0}^{2}t}{2L}\right] \operatorname{erfc}\left(A_{0}\sqrt{\frac{t}{2L}}\right)$$
--- a Mittag-Leffler function with index $\frac{1}{2}$
Short times:
$$q(t) \approx \left[1 - A_{0}\sqrt{\frac{2}{\pi}} (t/L)^{\frac{1}{2}}\right]$$
Long times:
$$q(t) \approx \sqrt{2/\pi A_{0}^{2}} (t/L)^{-1/2}$$

Conclusions

Kinetically constrained models with a conserved number of domain walls sometimes show a crossover from stretched exponential to power law decay.

In the Domain wall to Doublon model

An effective attraction between alternating pairs of domain walls \implies Doublons Once they form, they change the pattern of decay

In the Arrested state obtained by quenching from an ANNNI model

Single samples show a size-stretched exponential decay Averaging over the ensemble of initial conditions \Rightarrow A Mittag-Leffler function, which embodies the crossover

