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Slow Decays

Slow decays such as

•          Stretched exponential 𝜑 𝑡 	~	exp − !
"

#
	

•          Power law     ~	 𝑡!" 

can arise from a variety of mechanisms, e.g. 
 
•          Conservation laws, Criticality, 
              Hierarchical relaxation, Kinetic constraints, FDPO ...

Crossovers between the two forms occur in some cases.

                            Can we understand why? 



Stretched Exponential to Power Law : Examples

Clara Abaurrea-Velasco, Lozano, Bechinger, and de Graaf
Phys. Rev. Lett. 125, 258002 (2020)

Simulation studies for colloidal glasses 
of active particles in 3d

AVACF: Angular Velocity Auto-Correlation Function

Ganazzoli,  Raffaini, and Arrighi 
Phys. Chem. Chem. Phys., 2002, 4, 3734 (2002)

Simulation studies for the 
dynamics of polymer chains

𝑆(𝑄, 𝑡): Dynamic Structure 
Factor at wave vector 𝑄



We investigate the crossover in two models with kinetic constraints, 
 and elucidate why it occurs.

• Domain walls to doublons
         Bound states emerge as a function of time and change the pattern of decay

S. Mukherjee, P. Pareek, M. Barma,  S. K. Nandi, arXiv:2307.01801

• Domain walls in arrested states of a frustrated system
 Domain wall dynamics generates stretched exponentials.
          Ensemble averages generate power laws.

V. Gupta, S. K. Nandi, M. Barma, Phys. Rev. E  (2020).

Stretched Exponential to Power Law : Models

https://arxiv.org/abs/2307.01801


Kinetic constraint: 
A spin can flip only if its neighbours are oriented oppositely 

Spin flip ⟹ A domain wall (DW) steps right or left

DWs perform random walks with a hard core constraint: A simple exclusion process
 

What is the implication for the spin-spin autocorrelation function? 

Domain Wall Dynamics



Spin Autocorrelation Functions with Conserved DWs

A spin flips only if a DW crosses it.

How long does that take? 

𝑃𝑟𝑜𝑏 Domain	length	𝑙 ~ exp − ⁄𝑙 𝜉  

Diffusion	of	DWs	 ⟹  𝑡	~𝑙!. 

Thus	expect	 𝐶 𝑡 	~	𝑒𝑥𝑝 −( ⁄𝑡 𝜏)"/!

Bounds on 1/𝜏      [H. Spohn, 1989]

Upper Bound "
$
≤ 2[ 𝜋	(1 + cosh𝛽)]%". 

The Lower Bound is obtained through a variational process.

[J. L. Skinner, J. Chem. Phys, 1983;     H. Spohn, Comm. Math. Phys.,1989]



The DWD Model and the XOR-FA Model

DWD     ≡     Domain Wall to Doublon 
                   [S. Mukherjee, P. Pareek, M. Barma, S. K. Nandi, ArXiv 2023]

XOR-FA    ≡   XOR Fredrickson-Andersen 
                [L. Causer, I. Lesanovsky, M. C. Banuls, J. P. Garrahan, PRE (2020)]

Both refer to the conserved DW model in the presence of a field   ∑𝑆	%.  

The XOR-FA is model motivated by Rydberg atoms in their “facilitated” state: 
An atom changes its state only if a single neighbour is in the excited state.

            The XOR-FA analysis focuses on DW trajectories and whether they bunch up.

            The DWD analysis focuses on the spin autocorrelation function.



Doublons

Dynamics: 

DWs perform biased random walks, with alternating easy directions.

         Up-spin domains tend to shrink 
           ⟹
          Effective attraction between alternating pairs of DWs
          --- leads to the formation of doublons.

          The change in the nature of excitation
           (DW to doublon) induces a change 
           in the dynamics.

 



Diffusion of DWs and Doublons
Domain Walls perform biased random walks, with alternating easy directions. 

𝑣&' = 1 − 𝑐

𝐷&' =
1 + 𝑐
2

𝑤𝑖𝑡ℎ	 𝑐 = exp(− ⁄2 𝑇)	

Doublons perform unbiased random walks, 
with a hard core constraint. 

𝐷()*+,)- =
𝑐
2

Size fluctuations decrease as 𝑇 → 0.



Macroscopic Number of Domain Walls 

Observe a crossover to an asymptotic power law decay ~	𝑡.//1 .

At high 𝑇 : The power-law decay is preceded by a stretched exponential.
                  𝐶 𝑡 	~	𝑒𝑥𝑝 −( ⁄𝑡 𝜏)//1	 for	𝑡 < 	 𝑡23)44

At low 𝑇 : The power-law decay is preceded by a faster relaxation.



The Crossover Time

𝑡23)44 is a non-monotonic function of temperature

As 𝑇 increases, 𝑡23)44 goes up as the bias vanishes.

As 𝑇 decreases, 𝑡23)44 goes up as most microscopic update attempts are unsuccessful. 



(a)

(b)

Doublon - Dimer Mapping 

In the low-temperature limit, a doublon à a single up spin.

Hard core constraint of DWs ⟹ Minimum spacing of doublon spins= 2

This enables a mapping to dimer diffusion in 1D.

Autocorrelation function ~	𝑡.//1 



ℋ = −𝐽/∑% 𝑆% 𝑆%5/ + 𝐽1∑% 𝑆% 𝑆%51	

The Axial Next Nearest Neighbor (ANNNI) model involves competing n.n. and n.n.n. interactions

Frustration + Rapid cooling towards T=0 ⇒ Arrested states 

Quenching Frustrated Systems → Arrested States

Conserved dynamics 
Moves: ⇈	↔	⇊        ↔       ↑↓	↔	↓↑ if the sign of 𝐽" is flipped
Allow only energy-lowering or equal-energy moves

Dynamics 
in arrested states

= 𝐽1 / 𝐽/ 

[D. Das, MB  (1999)]



Interestingly, several of the arrested states are dynamically alive.

Dynamics  

T=0 ⇒ Energy-raising moves are not allowed

Find:
Domain walls perform random walks with interesting interactions

• Annihilation of  domains with an even separation of DWs
• In steady state, only odd-separation domains remain
• Distance of closest approach = 3

Thus the approach to steady state involves annihilation of DWs

The dynamics in steady state involves conserved DWs with exclusion

Dynamics in an Arrested State

Domain wall evolution



The Steady State

Sub-extensive number of RWs ⇒	Important consequences 

Correspondence to simple exclusion process: 
   Every allowed configuration is equally likely
   Steady state static correlation 

𝐶66 𝑟 ≡< 𝑆%𝑆%53 >= exp(	−
2𝑟
𝐿
	)

How many domain walls are there?

• Conservation law:  
              ⇈	↔	⇊ ⇒ Sublattice magnetization  𝑀4*+ = 	𝑀7 	− 𝑀8 invariant

• Random initial condition:
           ⇒ 𝑁&' = 𝑀4*+~𝑂( 𝐿) where 𝐿 is the system size



Approach to the Steady State

Coarsening
 
•      After time 𝑡9, equilibrium within patches of size ℒ(𝑡9)
  
•      𝐶 𝑟, 𝑡9  obtained from 𝐶66 𝑟 = exp(	− 13

:
	)  

            by replacing 𝐿 → ℒ(𝑡9)

• Even-domain disappearance is governed by
      diffusing, annihilating  DWs
        ⇒	 ℒ 𝑡9 ~𝑡9//1

 Conclude 𝐶 𝑟, 𝑡9 = exp(	− 83
!!"/$

	)



Dynamics in the steady state

Autocorrelation function

𝜑 𝑡 ≡< 𝑆%(𝑡;)𝑆%(𝑡;+𝑡) > 	 −< 𝑆% (𝑡;) >1

Considered earlier for the exclusion process with a finite density of DWs
             [J. L. Skinner (1983), H. Spohn (1989)]

Taking 𝜌~ /
:
 , obtain

.    𝜑 𝑡 = exp[−𝐴 !
:

"
%]

  An ultra-long 𝐿-dependent relaxation time

      -- a “size-stretched exponential”



Ensemble Average

Consider performing quenches from completely disordered states, with differing 𝑁.

Ensemble average

The distribution of 𝑁 follows 

𝑞 𝑡 =
	 1
𝐿 	'

&

< 𝑆&(𝑡')𝑆&(𝑡' + 𝑡) >	−	< 𝑆&(𝑡') >(

𝑃 𝑁 =
2
𝜋𝐿 exp

−𝑁(

2𝐿
𝑞 𝑡 =

2
𝜋𝐿	

6
'

)
𝑒𝑥𝑝

−𝑁(

2𝐿 	𝑒𝑥𝑝
−𝐴'𝑁𝑡*/(

𝐿⇒

𝑞 𝑡 = exp
𝐴&!𝑡
2𝐿 𝑒𝑟𝑓𝑐 𝐴&

𝑡
2𝐿 	Result:

Short times:

Long times:

𝑞 𝑡 ≈ [1	 −	𝐴&
!
'
	( ⁄𝑡 𝐿)

!
"	] 

𝑞 𝑡 ≈ ⁄2 𝜋𝐴&! 	 ⁄(𝑡 𝐿)%"/!

--- a Mittag-Leffler function with index  ⁄" !



Conclusions

Kinetically constrained models with a conserved number of domain walls
sometimes show a  crossover from stretched exponential to power law decay.

In the Domain wall to Doublon model 

   An effective attraction between alternating pairs of domain walls	 ⟹ Doublons
   Once they form, they change the pattern of decay

In the Arrested state obtained by quenching from an ANNNI model

   Single samples show a size-stretched exponential decay 
   Averaging over the ensemble of initial conditions 
              ⟹ A Mittag-Leffler function, which embodies the crossover






