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Dynamical large deviations

• Markov process: Xt , t ∈ [0,T ]

• Observable: AT [x ]

Probability distribution

P(AT = a) ≈ e−TI (a)

Generating function

E [eTkAT ] ≈ eTλ(k)

Effective process

• How are fluctuations created?

• Conditioned process: Xt |AT = a

• Markov when T →∞
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Applications

Markov chains
• Random walks

• Jump processes

• Occupation, displacement, currents

Diffusions
• Langevin equations, SDEs

• Work, heat, entropy production

• Active OUP

Many-particle dynamics

• Zero-range process

• Exclusion process

• Harmonic chains

• Density and current

Computer simulation in statistical mechanics 21

15 20 25 30
q [Å]

0

5

10

15

20

25

F(
q)

 [k
ca

l/m
ol

]

Figure 5. Modern micromanipulation equipment permits to exert well defined forces on
single molecules and probe the free energetics of selected degrees of freedom. On the left-
hand side a decaalanine molecule is stretched by a laser trap translated at constant speed
(graphics by Harald Oberhofer, University of Vienna). The free energy F (q) shown on
the right-hand side as a function of the end-to-end distance q was obtained by analyzing
the work performed on the system during the non-equilibrium stretching process [79, 85].

icz proved that equilibrium states are ”passive”, which means that no mechanical
work may be gained from an isolated system in such a state by applying an external
adiabatic perturbation [86, 87]. The notion of passivity is a particular formulation
of the Second Law and is equivalent to the statement that the system cannot be
used as a perpetuum mobile of the second kind. But what are the ”active” states
which may give rise to fluctuations violating the Second Law, and how are they
distributed in phase space? If the concept of passivity is applied to trajectories of
pure states, i.e. points in phase space, it has been shown for an ensemble of non-
interacting harmonic oscillators that the active states have measure zero and are
distributed on a Cantor-like fractal set in phase space [88]. Most likely, a similar
picture prevails also for more realistic systems, although we do not know of any
proof. For the first time, we encounter fractal objects in phase space in connection
with the Second Law.

Closer to laboratory experiments are systems in stationary nonequilibrium
states. Computer simulations turn out to be essential for the study of transport
properties in this case. Nonequilibrium states are generated by the application
of an external perturbation, which may be either mechanical (external fields) or
thermal (velocity or temperature gradients). Since the perturbation does work
on the system which is eventually dissipated into heat, a thermostating mecha-
nism is required to achieve a stationary state. A prototypical example is a gas
sandwiched between two huge blocks of copper at different temperatures acting
as thermostats such that a stationary heat flow develops from the warm to the
cold block. However, for computer modeling, the ”huge blocks” pose a serious
obstacle, since they add (too) many thermostated degrees of freedom to the prob-
lem. An ingenious dynamical scheme may be used to avoid the introduction of so
many additional variables. It consists in replacing a ”block” by a small number
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3.1.1. Variants of the ASEP. There are a few simpler cases that one can consider. The first is
to force the particles to jump only to the right, by taking q 0g d= = = . In this case, the
model is called the totally asymmetric simple exclusion process (or TASEP), and we will
often use it in our calculations, as its behaviour is identical to that of the ASEP for all intents
and purposes, but much easier to deal with.

The second is the opposite limit, where the jumps are as probable to the left as they are to
the right: q = 1. This case is called the symmetric simple exclusion process (or SSEP). It is an
example of a ‘boundary-driven diffusive systems’ (as opposed to the ASEP, which is bulk-
driven by the asymmetry, and is therefore not diffusive). Its behaviour is quite different from
that of the ASEP, and we will not consider this limit in the present review.

Sitting somewhere between the SSEP and the ASEP is the weakly asymmetric simple
exclusion process (or WASEP), where the asymmetry q1 - is taken to scale with the size of
the system as L 1- . This is done in order to make the integral of the field in the bulk, which is
of order L q1( )- , comparable with the difference of chemical potential between the
reservoirs, which is a constant with respect to L. The ASEP and the WASEP correspond to
two different ways to take the large L limit in the system: in the ASEP, no rescaling is done to
the driving field, so that the large size limit corresponds to a system of increasing length, with
the lattice spacing remaining constant, which is relevant to model a system which is really
discrete (think for instance of ribosomes on a long string of mRNA, or any other example of
discrete biological transport). In the WASEP, on the contrary, the field is rescaled as L 1- , so
that the large size limit corresponds to a system of fixed length, with a smaller and smaller
lattice spacing, going to a continuous system when L reaches infinity. We will be using the
WASEP as a starting point in section 6.

One can also consider different geometries for the model. Take for instance the ASEP
with periodic boundary conditions, i.e. on a ring (figure 4(b)). In this case, the system is not
connected to any reservoir, and the number of particles is conserved. This makes it somewhat
easier to deal with: the steady-state distribution is uniform, and the coordinate version of the
Bethe ansatz can be used to solve it, as we will see in section 4.2.1.

The ASEP can be defined on an infinite lattice instead (see lower part of figure 4(d)). In
this case, there is in general no convergence to a steady state (for generic initial conditions),
and the observable of choice is instead the large time behaviour of the transient regime.

Finally, one can put more than one type of particles in the system, and consider the
multispecies ASEP (figure 4(c)). The exchange rates must then be defined between any two
different species of particles. The simplest case to consider (and the most tractable one) is that
where the types of particles are numbered, from 0 (for holes) to K (for the ‘fastest’ particles),
and where a particle of type k sees all lower types k k¢ < as holes, which is to say that the

Figure 3. Dynamical rules for the ASEP with open boundaries. The rate of forward
jumps has been normalized to 1. Backward jumps occur with rate q 1< . All other
parameters are arbitrary. The jumps shown in green are allowed by the exclusion
constraint. Those shown in red and crossed out are forbidden.
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[Reviews: HT 2009, 18; Derrida 07; Bertini et al 07]
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Linear diffusions

• Quadratic observables: Bercu et al 1997

• Entropy production: Visco 2006; Chernyak et al 2006; Jaksic et al 2016

• Nonequilibrium work: Kwon, Noh & Park 2011, Noh 2014

• Coupled oscillators: Kundu et al 2011, Sabhapandit, 2012; Pal & Sabhapandit 2013

• More general setting: Mazzolo & Monthus 2023

This work
• General linear SDEs in Rn

• More general class of observables

• Not based on path integrals

• Derive effective process (remains linear)

• Link with control theory (LQG)
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Linear diffusions

• Dynamics:

dX (t) = −MX (t)dt + σdW (t)

• X (t) ∈ Rn, W (t) ∈ Rm

• M positive definite, σ > 0

• Applications:
• Laser tweezers (thermal noise)
• Electric circuits (Nyquist noise)
• Noisy controlled systems x

y

Stationary density

p∗(x) ∝ e−
1
2
x ·C−1x

D = MC + CMT

Stationary current

J∗(x) = Hxp∗(x)

H =
D

2
C−1 −M
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Example 1: Gradient diffusions

• Conservative drift:

F (x) = −∇U(x)

• Noise matrix: σ = εI

• 2D example:

M =

(
γ 0
0 γ

)
• Density:

p∗(x) =
γ

πε2
exp

(
− γ
ε2
‖x‖2

)
• Current: J∗ = 0

x

y

Equilibrium or reversible system
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Example 2: Transverse diffusions

• Drift:

F = −∇U + A, A · ∇U = 0

• 2D example:

M =

(
γ ξ
−ξ γ

)
• Density:

p∗(x) =
γ

πε2
exp

(
− γ
ε2
‖x‖2

)
• Current:

J∗(x) = ξ

(
−y
x

)
p∗(x)

Nonequilibrium or nonreversible system

x

y

x

y
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Example 3: Brownian gyrator

[Exartier & Peliti 1999; Filiger & Reimann 2007]

x1 x2

T1 T2

�

• Drift:

M =

(
γ + κ −κ
−κ γ + κ

)
• Noise matrix:

σ =

(√
2T1 0
0

√
2T2

)
• J∗ 6= 0 iff κ > 0 and T1 6= T2

Nonequilibrium or nonreversible system

-� -� � � �

-�

-�

�

�

�
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Observables

• Linear forms:

AT =
1

T

∫ T

0
η · X (t)dt

• Quadratic forms:

AT =
1

T

∫ T

0
X (t) · QX (t)dt

• Current-type forms:

AT =
1

T

∫ T

0
ΓX (t) ◦ dX (t)

Large deviation approximation

P(AT = a) ≈ e−TI (a)

0 20 40 60 80 100

-0.2

0.0

0.2

0.4

0.6

T

A
T

Examples

• Mechanical work WT

• Heat exchanged QT

• Entropy prod ΣT

• Integrated currents JT
• Residence times

• Control costs, reward

• Statistical estimators
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Large deviation theory [Donsker & Varadhan 1970s; Gärtner 1977]

LD functions
• Rate function:

I (a) = max
k∈R
{ka− λ(k)}

• SCGF:
λ(k) = dom eigval(Lk)

Fluctuation process

dX̃t = F̃k(X̃t)dt + σdWt

• Modified drift:

F̃k(x) = F (x) + D∇ ln rk(x), I ′(a) = k

t

xHtL
a

PHA T=
aL

• Effective process creating fluctuation [Chetrite & HT 2013, 2015]

• Effective density and current: p∗k , J∗k
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Main result

[du Buisson PhD 2023; du Buisson & HT 2023]

• Generating function:

Gk(x , t) = E [ektAt |X (0) = x ]

• Feynman-Kac equation:

∂tGk(x , t) = LkGk(x , t), G (x , 0) = 1
• Solution:

Gk(x , t) = ex ·Bk (t)xe
∫ t

0 Tr[DBk (s)]ds t→∞∼ ex ·B∗
k xet Tr(DB∗

k )

LD solution
• SCGF: λ(k) = Tr(DB∗k )

• Riccati matrix: B∗k
• Eigenfunction: rk(x) = ex ·B∗

k x

• Effective drift: Fk(x) = −Mkx
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Current observables

AT = 1
T

∫ T
0 ΓX (t) ◦ dX (t)

• Tilted generator:

Lk = −kMx · Γx + (−M + kDΓ)x ·∇ +
1

2
∇ · D∇ +

k2

2
Γx · DΓx

• Algebraic Riccati equation:

k2

2
ΓTDΓ−k

2
(MTΓ−ΓM)−(M−kDΓ)TB∗k−B∗k (M−kDΓ)+2B∗kDB∗k = 0

C + AB + BA + BQB = 0

Effective process

Mk = M − 2DB∗k − kDΓ

p∗k(x) ∝ e−
1
2
x ·Ck

−1x , D = MkCk + CkM
T
k

J∗k (x) = Hkxp∗k(x), Hk = D
2 Ck

−1 −Mk
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Example: Stochastic area

[Lévy 1940, 1950, 1951; Teitsworth et al 2017, 2019]

• Process in R2:
(
(Xt ,Yt)

)T
t=0

• Green’s theorem:

AT =
1

2

∫ T

0
XtdYt − YtdXt

• Brownian motion:

p(AT = a) =
1

T
sech

(πa
T

)
, var(AT ) =

T 2

4

• Linear diffusions:

a∗ = lim
T→∞

〈AT

T

〉
=

(
MC − D

2

)
1,2

6= 0 nonreversible systems

x

y

(X0, Y0)

(XT , YT )

AT

Paul Lévy (1886-1971)
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[Lévy 1940, 1950, 1951; Teitsworth et al 2017, 2019]

• Process in R2:
(
(Xt ,Yt)

)T
t=0

• Green’s theorem:

AT =
1

2

∫ T

0
XtdYt − YtdXt

• Brownian motion:

p(AT = a) =
1

T
sech

(πa
T

)
, var(AT ) =

T 2

4

• Linear diffusions:

a∗ = lim
T→∞

〈AT

T

〉
=

(
MC − D

2

)
1,2

6= 0 nonreversible systems

x

y

(X0, Y0)

(XT , YT )

AT
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Example: Transverse diffusions [du Buisson, Mnyulwa & HT 2023]

M =

(
γ ξ
−ξ γ

)
AT =

1

T

∫ T

0
ΓX (t) ◦ dX (t) Γ =

1

2

(
0 −1
1 0

)
• Typical area: a∗ = ε2ξ

2γ

• Riccati matrix: B∗k = b∗k I

• SCGF:

λ(k) = γ −
√
γ2 − kε2(kε2+4ξ)

4

• Rate function:

I (a) =
√

ε4(γ2+ξ2)
4a2+ε4 − 2aξ

ε2 − γ

+
4|a|3(γ2+ξ2)√

a2ε4(4a2+ε4)(γ2+ξ2)

• Fluctuation relation:

I (−a) = I (a) + 4ξa
ε2

x

y

-1 0 1 2 3 4

0

1

2

3

4

a

I
(a

)
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Example: Transverse diffusions (cont’d)

• Effective process:

Mk =

(
γk ξk
−ξk γk

)
ξk = ξ + kε2

2

γk =

√
γ2 − kε2(kε2+4ξ)

4 , I ′(a) = k

Transverse di↵usion: Fluctuations

Small fluctuations:
both �a and ⇠a are
modified.

Large |a|: same
behavior as before.
�a ! 0, ⇠k ! �

γa

ξa

-4 -2 0 2 4
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

a

du Buisson Large deviations of the stochastic area 12 / 12
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2

-2 -1 0 1 2
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0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

xxx

yyy

(a) (b) (c)

a > a∗

Deconfinement
0 < a < a∗

Confinement
a < 0

Current reversal
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Example: Transverse diffusions (cont’d)
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Conclusions

• Similar results for other observables/processes

• Fluctuations created by effective (modified) linear process

• Underlying Gaussian density and current fluctuations

• Effective process = LQG optimal control

Current work
• Linear approximations for nonlinear SDEs/observables

• Numerical methods (Riccati or control)
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