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Active ensembles

Active systems comprising of particles that can perform directed motion by self propulsion

constitute a major class of non-equilibrium systems.

These systems break detailed balance at the local level.

Some interesting questions:

Can fluctuations be studied analytically?

What are the e↵ects of initial conditions on fluctuations?

What is the e↵ect of quenching initial bias directions?

What happens near and beyond the motility induced phase separation?
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Non-interacting Run and Tumble particles

We consider run and tumble particles evolving according to the Langevin equation

@x

@t
= v�(t), � = ±1. (1)

The random variable � switches value at a flipping rate �.
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Initial Conditions

x

t

x1x2x3...

�++ ���� ++
m1m2m3

Total Density = �

Fraction of particles in � state = f�

Fraction of particles in + state = f+
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Microscopic dynamics

x

t

x1x2x3...

�++ ���� ++
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Quantities of Interest

We are interested in the flux Q of particles across the origin up to time t. We measure the

number of particles that cross the origin up to time t = number of particles on the half

infinite line (x > 0) at time t.

We focus on the role of initial conditions on the current fluctuations.

We start from a step initial density profile.

We assume that the position of each particle is distributed uniformly in the box [�L, 0].

We then take a L ! 1, N ! 1 limit with N/L ! ⇢ fixed in our analytical calculations.

We consider a fraction of particles f+ initialized in the + state and f� initialized in the �

state.
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Di↵erent kinds of averaging

(1) annealed setting - average over initial realizations with mean density ⇢.

(2) quenched setting - positions of particles are fixed initially.

The h· · · i{xi} denotes an average over the history with fixed initial positions {xi}.

The · · · denotes an average over initial positions.

In the annealed setting, the generating function for the integrated current Q is defined as

1X

Q=0

e
�pQ

Pan(Q, t) = he�pQi{xi}. (2)

In the quenched setting, the generating function for the integrated current Q is defined as

1X

Q=0

e
�pQ

Pqu(Q, t) = exp

h
lnhe�pQi{xi}

i
. (3)
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Di↵erent kinds of averaging (cont.)

In the annealed setting, average over initial realizations with mean density ⇢.

he�pQi{xi} = 1� phQi{xi} +
p
2

2
hQ2i{xi} + . . . . (4)

The cumulant generating function is therefore

ln he�pQi{xi} = p hQi{xi}| {z }
µan

+
p
2

2

⇣
hQ2i{xi} � hQi{xi}

2
⌘

| {z }
�2
an

+ . . . (5)

In the quenched setting, the average is performed for every cumulant

lnhe�pQi{xi} = p hQi{xi}| {z }
µqu

+
p
2

2

⇣
hQ2i{xi} � hQi

2

{xi}

⌘

| {z }
�2
qu

+ . . . (6)
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Known results

For non-interacting random walkers

�2

an(t) = ⇢

r
Dt

⇡
,

�2

qu(t) = ⇢

r
Dt

2⇡
. (7)

For SSEP

�2

an(t) = ⇢

r
Dt

⇡

✓
1�

⇢
p
2

◆
,

�2

qu(t) = ⇢

r
Dt

⇡

 
1
p
2
�

2�
p
2

p
2

⇢

!
. (8)

Derrida and Gerschenfeld, Journal of Statistical Physics, 136(1):1–15, (2009).

Krapivsky and Meerson, Phys. Rev. E. 86(3):031106, (2012).
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Known results

For non-interacting RTPs

�2

an(t) ����!
t!1

⇢

r
De↵ t

⇡
,

�2

qu(t) ����!
t!1

⇢

r
De↵ t

2⇡
. (9)

De↵ = v
2/(2�) is the e↵ective di↵usion constant.

Banerjee, Majumdar, Rosso, and Schehr, Phys. Rev. E. 101(5):052101, (2020).

Di Bello, Hartmann, Majumdar, Mori, Rosso, and Schehr, Phys. Rev. E 108, 014112 (2023).

Can the fluctuations be computed as a function of time?
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RTPs: Even more, Di↵erent kinds of averaging

The
z}|{
· · · denotes an average over initial magnetization states.

Annealed density and annealed magnetization initial conditions

1X

Q=0

e
�pQ

Pa,a(Q, t) =

z }| {
he�pQi{xi},{mi} . (10)

Annealed density and quenched magnetization initial conditions

1X

Q=0

e
�pQ

Pa,q(Q, t) = exp

2

4
z }| {
ln he�pQi{xi},{mi}

3

5 . (11)

Quenched density and quenched magnetization initial conditions

1X

Q=0

e
�pQ

Pq,q(Q, t) = exp

2

4
z }| {
lnhe�pQi{xi},{mi}

3

5 . (12)

Quenched density and annealed magnetization initial conditions

1X

Q=0

e
�pQ

Pq,a(Q, t) = exp

2

4ln
z }| {
he

�pQ
i{xi},{mi}

3

5 . (13)

Jose, Rosso, and Ramola, Phys. Rev. E 108, L052601 (2023)
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Total flux across the origin

Let Ii (t) be an indicator function defined as

Ii (t) =

(
1, if the i

th
particle is to the right of the origin at time t,

0, otherwise.
(14)

The total number of particles on the right of the origin is

N
+
=

NX

i=1

Ii (t). (15)

For a fixed initial realization of the positions {xi} and the bias states {mi}, the flux

distribution is given as

P(Q, t, {xi}, {mi}) = Prob.(N+
= Q) =

*
�

"
Q �

NX

i=1

Ii (t)

#+

{xi},{mi}

. (16)
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Generating Function

We can compute the generating function

1X

Q=0

e
�pQ

P(Q, t, {xi}, {mi}) = he
�pQ

i{xi},{mi} =

*
exp[�p

NX

i=1

Ii (t)]

+

{xi},{mi}

. (17)

We make use of the identity e
�pIi = 1� (1� e

�p
)Ii since Ii = 0, 1.

Since the particles are non-interacting, we have

he
�pQ

i{xi},{mi} =

NY

i=1

⇥
1� (1� e

�p
)hIi (t)i{xi},{mi}

⇤
. (18)

This is simply expressed in terms of the single particle Green’s function

hIi (t)i{xi},{mi} =

Z 1

0

dx G
mi (x , xi , t) = U

mi (�xi , t), xi < 0. (19)

The fundamental quantity of interest is therefore

he
�pQ

i{xi},{mi} =

NY

i=1

⇥
1� (1� e

�p
)U

mi (�xi , t)
⇤
, xi < 0. (20)
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Single particle propagators

The evolution equations are

@P+(x , t)

@t
= �v

@P+(x , t)

@x
� �P+(x , t) + �P�(x , t),

@P�(x , t)

@t
= +v

@P�(x , t)

@x
� �P�(x , t) + �P+(x , t). (21)

The Green’s functions for RTP are

G̃(x ,�z, s) =
e
� |x+z|

p
s(s+2�)

v

p
s(s + 2�)

2vs
, z � 0,

G̃
±
(x ,�z, s) =

e
� |x+z|

p
s(s+2�)

v

⇣p
s(s + 2�)± s sgn(x + z)

⌘

2vs
. (22)
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Single particle propagators (cont.)

Green’s function in real space are complicated

G(x ,�z, t) =
e
��t

2

n
�(x + z � vt) + �(x + z + vt)

+
�

v


III 0(!) +

�tIII 1(!)

!

�
⇥(vt � |x + z|)

o
, ! =

�

v

q
v2t2 � (x � xi )

2. (23)

It is easier to work in the Laplace domain. The integral of the Green’s function over the

half-infinite line have particularly simple forms

Ũ(z, s) =

Z 1

0

G̃(x ,�z, s) dx . (24)

Ũ(z, s) =

exp

✓
�z

p
s(s+2�)

v

◆

2s
,

Ũ
±
(z, s) =

e
� z

p
s(s+2�)

v

2s

 
1±

s
p

s(s + 2�)

!
. (25)
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Asymptotic behavior of fluctuations: Summary

Jose, Rosso and Ramola, arXiv:2310.16811 (2023).

t ! 0 t ! 1

⇢vf +t � ⇢v�
4

�
3f

+
� f

��
t
2 ⇢

q
De↵ t

⇡ annealed ⇢, annealed m

⇢vf +t � ⇢v�
4

�
3f

+
� f

��
t
2 ⇢

q
De↵ t

⇡ annealed ⇢, quenched m

⇢v�
4

�
3f

+
+ f

��
t
2 ⇢

q
De↵ t

2⇡ quenched ⇢, quenched m

⇢vf +(1� f
+
)t +

⇢v�
4

�
3f

+
� f

�� �
f
+
� f

��
t
2 ⇢

q
De↵ t

2⇡ quenched ⇢, annealed m

Table: Limiting behaviors of fluctuations for di↵erent initial conditions. Here, De↵ = v
2/(2�) is the e↵ective

di↵usion constant for RTP motion in one dimension.
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Monte Carlo simulations

Figure: Variance of the integrated current plotted as a function of time for di↵erent initial conditions. The solid

curves correspond to exact analytic results and the points are from numerical simulations of the microscopic

model. For quenched density and quenched magnetization initial conditions, the fluctuations surprisingly exhibit

a t
2
behavior at short times.
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Monte Carlo simulations

Figure: Variance of the time-integrated current plotted for annealed density initial conditions. The points are

obtained from direct numerical simulations and the solid curves correspond to the exact analytical results. These

plots are for the parameters ⇢ = 20, � = 1, v = 1. The simulation data is averaged over 10
6
realizations.
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Microscopic model

 +

 +  +

 +

 +

 +
 +

 +  +
-

- - -
-

-
-

Figure: Lattice model of interacting active particles with di↵erent probability rates.

Kourbane-Houssene, Erignoux, Bodineau, and Tailleur, Phys. Rev. Lett. 120, 268003, (2018).
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Hydrodynamic equations

Using the di↵usive rescaling of space and time x ! i/L and t ! t/L2, one can define the

coarse-grained plus and minus density fields ⇢+(x , t) and ⇢�(x , t) as

⇢+(x , t) =
1

2L�

X

|i�Lx|<L�

µ+

i
,

⇢�(x , t) =
1

2L�

X

|i�Lx|<L�

µ�
i
. (26)

The hydrodynamic equations obeyed by the system are

@t⇢
+

= D@2

x⇢
+
� �@x

⇥
⇢+(1� ⇢)

⇤
+ �(⇢� � ⇢+),

@t⇢
�

= D@2

x⇢
�

+ �@x
⇥
⇢�(1� ⇢)

⇤
+ �(⇢+ � ⇢�). (27)
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Fluctuating hydrodynamics

Agranov, Ro, Kafri, and Lecomte, J. Stat. Mech. 2021(8):083208, (2021).

The fluctuating hydrodynamic equations obeyed by ⇢+(x , t) and ⇢�(x , t) can be written as

@t⇢
+
= D@2

x⇢
+
� �@x

⇥
⇢+(1� ⇢)

⇤
+ �(⇢� � ⇢+) +

p

D
p

L
@x⌘

+
+

p
�

p

L
⌘K ,

@t⇢
�

= D@2

x⇢
�

+ �@x
⇥
⇢�(1� ⇢)

⇤
+ �(⇢+ � ⇢�) +

p

D
p

L
@x⌘

�
�

p
�

p

L
⌘K . (28)

Mapping to ABC model

h⌘±(x , t)⌘±(x
0, t0)i = 2⇢±(1� ⇢±) �(x � x

0
)�(t � t

0
),

h⌘+(x , t)⌘�(x
0, t0)i = h⌘�(x , t)⌘+(x 0, t0)i = �2⇢+⇢��(x � x

0
)�(t � t

0
). (29)
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Scaled hydrodynamic equations

In terms of the total density ⇢ = ⇢+ + ⇢� and magnetization m = ⇢+ � ⇢� fields, the

hydrodynamic equations can be rewritten as

@t⇢ = D@2

x⇢� �@x [m(1� ⇢)],

@tm = D@2

xm � �@x [⇢(1� ⇢)]� 2�m. (30)

Using a second rescaling t ! t� and x ! x`s where `s =
p

�/D, the above equations can

be converted to the dimensionless form

@t⇢ = @2

x⇢� Pe @x [m(1� ⇢)],

@tm = @2

xm � Pe @x [⇢(1� ⇢)]� 2m. (31)

Activity is controlled by Péclet number, Pe = �/
p
�D

The fluctuating hydrodynamic equations become

@t⇢ = D@2

x⇢� �@x [m(1� ⇢)] +

p

D
p

L
@x⌘⇢,

@tm = D@2

xm � �@x [⇢(1� ⇢)]� 2�m +
1
p

L

⇣p
D @x⌘m + 2

p
� ⌘K

⌘
. (32)
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Phase diagram

Figure: Linearly stable region is given by Pe
2
(1 � ⇢)(2⇢ � 1) < 2.

Agranov, Ro, Kafri, and Lecomte, J. Stat. Mech. 2021(8):083208, (2021).
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Quenched initial conditions

We consider quenched initial conditions of the form

⇢(x , 0) = ⇢b✓(`s/2� x) + ⇢a✓(x � `s/2) ,

m(x , 0) = mb(`s/2� x) +ma✓(x � `s/2) . (33)

Q(t) =

Z `s

`s
2

dx [⇢(x , t)� ⇢(x , 0)] . (34)
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Flat Initial Conditions: small and large time asymptotics

In the limit of small T , we obtain

hQ(T )
2
ic ���!

T!0

p

T
�⇢
p
2⇡

, (35)

where

�⇢ = 2⇢(1� ⇢) (36)

and in the limit of large T , we obtain

hQ(T )
2
ic ����!

T!1

p

T
�⇢
p
2⇡

⇠
�
2 + Pe

2
(1� ⇢)

�
p
2

, g  2, (37)

where

⇠ =
1

p
2� g

, g = Pe
2
(1� ⇢)(2⇢� 1). (38)

Jose, Dandekar, and Ramola, J. Stat. Mech. 083208 (2023)
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Zero di↵usive case

We obtain the following limiting behaviors

hQ(T )
2
ic ����!

T!1

p

T
2
p

|g0|�(1� ⇢)⇢
p
⇡
p
�(1� 2⇢)

, g0  0,

and

hQ(T )
2
ic ���!

T!0

T
2
2
p

|g0|��(1� ⇢)⇢

(1� 2⇢)
, g0  0.

g0 = (1� ⇢)(2⇢� 1).

To obtain the non-interacting limit, we take a ⇢ �! 0 limit

hQ(T )
2
ic ����!

T!1

p

T

p
De↵

p
2⇡

2⇢, (39)

hQ(T )
2
ic ���!

T!0

T
2
2��⇢, (40)

where De↵ = 2�2/� is the e↵ective di↵usion constant for a single RTP in 1D.
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Match with hydrodynamic equations

Figure: Evolution of the density ⇢(x, t) and magnetization m(x, t) fields starting from a step initial condition

for fixed parameter values D = 1,� = 5, � = 1. In the microscopic simulations, we have used a lattice of size

L = 1000 with 250 particles.
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Match with short time asymptotics and lattice e↵ects

Figure: Second cumulant of the integrated current plotted as a function of time for the flat initial profiles with

⇢(x, 0) = 0.25. The parameter values used are D = 1, � = 1 and � = 10. The points are obtained from MC

simulations.
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Three regimes and e↵ect of density

Figure: (a) Three regimes in the second cumulant for the initial condition ⇢(x, 0) = ⇢ = 0.25 and

m(x, 0) = 0. (b) Second cumulant of the integrated density current plotted for the initial condition ⇢(x, 0) = ⇢
and m(x, 0) = 0 for di↵erent values of ⇢. The Pe number is fixed to be 2.
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E↵ect of Pe and D

Figure: (a) Second cumulant of the integrated density current plotted for the initial condition ⇢(x, 0) = 0.75,
m(x, 0) = 0 for di↵erent values of Pe. (b) Second cumulant of the integrated density current plotted for the

initial condition ⇢(x, 0) = 0.25, m(x, 0) = 0 for di↵erent values of D. The fixed parameter values used are

� = 1, � = 2. As we reduce D, the small time behavior changes from
p

T to T
2
.
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Conclusions

We analytically computed the current fluctuations across the origin for non-interacting RTPs.

We also analytically computed the current fluctuations for an interacting active lattice gas.

We showed that an asymmetry in the initial bias directions can lead to a di↵erent

power-laws for the current fluctuations.

The cumulants of the time-integrated current for the interacting active lattice gas model

match the non-interacting case at low densities.

It would be interesting to study generalized disorder averages in other models where multiple

coupled fields appear.
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Thank You.
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