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Moran process (Moran 1958)
e Start with a single mutant (1), N — 1 wild type (0)
e No further mutations are allowed
e Mutant fitness = 1 + s, wild type fitness = 1

e Prob(birth) o fitness, Prob(death) o 1
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e Two absorbing states: eventually none or all mutants



Fixation probability

e Starting with single mutant, prob eventually all mutants?

e Backward Fokker-Planck equation for P(p, t;x=1,¢ > t),
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e For boundary conditions, P(0,t) =0, P(1,t) = 1,

s , Ns>1
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Mean sojourn time

e Mean # of visits to a site before eventual absorption

number of mutants

time
10

e Mean time spent between x and x + dXx, starting from p,

before eventual absorption,

0
G(p;x):/ P(p,t; x,0)dt, 0 < x<1
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where, P(p, t; x,0) obeys the backward equation



Mean sojourn time

e Since )
oP(p,t) 9*P(p, t)

e Mean sojourn time is the Green's function,
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with G(0;x) = G(1;x) =0
e Mean absorption time, starting from p,

/01 G(p; x)dx



Moran process: mean sojourn time
e Starting with single mutant, the mean sojourn time is
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Genetic diversity

e Data from 6 individuals, large number of sequenced loci

Loci 1 2 3 4 5 6 7 8
Samples

1 0 1.0 0 O O 1 O
2 1 0 1. 0 0 O 1 O
3 0 1.1 0 0 1 1 O
4 0o 0o o o1 0 1 1
5 0 0 1. 0 0 0 1 O
6 0 0o 01 01 1 O

e E.g., how many ‘diverse’ loci?

e What evolutionary forces shaped the diversity?



Site frequency spectrum
e f{j,t)=Mean # of loci with 0 < j < N mutants at time t?

Loci 1 2 3 4 5 6 7 8
Samples

1 0 1.0 0 O O 1 O

2 1 0 1. 0 0 O 1 O

3 0 1.1 0 O 1 1 O

4 0 0o o 0o 1 0 1 1

5 0 0 1. 0 0 0 1 O

6 0 0o o1 01 1 O

# of 1's 1 2 3 1 1 2 6 1

e Measurable from data; Z}:ll flj, t) = # of diverse loci; ...



Modeling genetic diversity (Sawyer+Hartl 1992)
e Assume: independent evolution at each locus

e Stochastic (say, Moran) trajectories start with single

mutant that arrive at different instants with rate 2Nu

e No more mutations (assuming infinite loci)

number of mutants
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Stationary state

e Trajecs lost due to absorption; created via new mutations

number of mutants
300

e Mean # of loci with freq 0 < x< 1 at large times?

0
fix, t — oo):2Nu/ P(p— 0,t; x,0)dt x G(p — 0; x)

—00



Moran process: Stationary state

e Assuming stationary state, SFS used to infer selection

E.g., U-shaped? Suggests s > 0

G(p;x)
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e Mean number of ‘diverse’ loci,
) 2InN , Ns>1
/II_N fx)dx ~ 2Ny x < In N , s=0
i const , Ns< —1

Larger populations are more diverse



Diversity in nonequilibrium situations

e Dynamics of f(x, t) in constant environments
How diversity varies with time? Relaxation to equilibrium?

(Evans et al. 2007; ...; Gotsch+Biirger 2023)

e In time-inhomogeneous environments?
Effect of changing population size (Williamson et al. 2005
...), changing selection (Huerta-Sanchez et al. 2008;

Kaushik+KJ 2021), both (KJ+Kaushik 2022; Balick 2023)



Fokker-Planck equation with time-dependent rates

e Starting from p — 0, we have

fix,t) = /0t2N(tj)/,L X P(x, t; p, t')dt

e The forward Fokker-Planck equation for f{x, t) is
(Evans, Shvets, Slatkin 2007)

oMxt) 0 [x(l—);)f(x, t)] +8672 {x(1 ;A)/<()f§x t)]
X2 t

o~ W
e Mutational input modeled by a boundary condition:

2N(t)

’
X

Lim,,of(x, t) = (1, t) = finite



Fokker-Planck equation with time-dependent rates

e Since inhomogeneous boundary condition, work with

vix, t) = x(1 — x)f(x, t) — 2N(t) (1 — x)

e Expand in an orthonormal basis (that obey bdry condns)

with time-dependent coefficients,

V(X’ t) = Z am(t)wm(x)

e Due to selection term, in general, a,,(t) obeys a

three-term recursion (Kimura 1964; KJ+Devi 2020)

dan,
o = cr(m)ams1r + c(m)am—1 + co(m)am



Neutral case: exactly solvable (Evans et al. 2007)

e For s =0, we have

Of(x, t) _ iz [x(l — X)f(x, t)]
ot 0x? 2N(¢)

e Expand in eigenfunctions,

o2 [x(l - x)w]

e 5 = —\(x)

given by Gauss hypergeometric function (Kimura 1955)



l. Periodically changing environment (KJ+Kaushik 2022)
e e.g., seasonal variations can affect fitness in plants

e demography due to, for e.g., prey-predator dynamics

100

(Odum 1953)
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Model parameters

Ofix, t) 0 [x(1—x)fix,t) 2 [x(1—x)fix, t)
or ~ Wy [ 2 } ok [ 20(2) }
e In general,
s(t) = S+osin(wt+ ¢)
N(t) = N1+ vsin(Qt+ )]

e Time scales: N, 1/5,w 1 =Q!
- Slowly changing environment, w=! > N,1/3

- Rapidly changing environment, w=! < N,1/3

e At late times, f(x,t) changes periodically; on averaging

_ w 27 fw
fx) = 5/0 fx, t)dt
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e Adiabatic approx: s— s(t), N — N(t) in stationary result
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e In the absence of selection,



Slowly changing environment

e But with selection, nonlinear dependence on N, s:

xz(lil(—t)i) . Mt)s(t) > 1
f(X7 t) ~ 2(/]\-/(1‘)M)e/\/(t)|s(t)>< ' N(t)S(t) < -1

e Only positive part of cycle contributes,

o=t x [ 2ule) Ol 52
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Implications

- 1 2/ , ny 9t
=75 > /O 2uN(E) Onls()] 5 =

e Even if selection zero on average, f(x) still U-shaped

= misinfer parameters if assume constant selection

Glpix)

e Lewontin's paradox (1974): Observed (neutral) diversity
smaller than predicted using census pop size. Effective
pop size captures joint effect of changing N and s

(KJ+Kaushik 2022); lower diversity than average pop size



Rapidly varying environment

e In the absence of selection, using the exact solution,

, 1 /e oy df |
fo) =3~ M N(E) 2;,@1

so that effective pop size is the harmonic mean

e With selection, numerical analyses suggest that stationary
state results with average parameters (N,3) hold (but not

always true)



Diversity in changing environment

e Varies non-monotonically with environmental frequency
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e Max/min depends on other parameters (dominance coeff)



Il. Selective sweep (Maynard Smith4Haigh 1974)
e Motivated by Lewontin's paradox of low diversity

e Consider Moran process for 2 physically linked loci

W0, W1 have fitness 1; SO, S1 have 1 +5,5>0

W0 WO WO S1
WO WO WO S1
W1 w1 S1 S1
W1 S1 S1 S1

A 0w N =

e Due to selection at special site (provided S not lost),

initial diversity in Os and 1s is lowered



Selective sweep in asexuals (with Kaushik+Johri)

e As before: large number of loci; single 1 arises at new loci

at different instants

e But now “interacting” loci as they are physically linked

1 W 00.. W0 o0.. WO00O0.. S100..
2 W0 0... WO0O.. WO00O0.. S100..
3 W 00... S10.. S100... S110..
4 S10.. S10.. S110.. S110..

e Process stops when S is fixed in the population



Diversity in growing population
e Interested in diversity in S-subpopulation
e Full model has selection (W vs. S), fixed population size
but within S-subpop, no selection but growing size, N(t)
S100..
S110..

S10.. S100... S100...
S10.. S10.. S110.. S110..



Moran process with growing size
e Assume: independent evolution at each locus

e When S-subpop size remains same
t 0 1 0 0 0 1
t+1]0 11 0 0 H 1

e If increases, either type equally likely to be added
t 0 1 0 0 0 1
t+1 /0 11 0 0 0 1

o If decreases, either type equally likely to be removed
t 0 1 0 0 0 1
t+1 (0 1 0 0 ¥ 1



Fokker-Planck equation
e Change in frequency requires taking care of not only
change in mutant number but also population size

E.g., nt+1 - nt, Nt—‘,—l - Nt+ 1,

e The effective pop size is derived,

Of(x, t) _ 872 [x(l — X)f(x, t)]
ot 0x? 2N,(1)

N.(t) is smaller than the naive expectation, N(t)



On-fixation diversity
e At the end of the process when S has fixed,
1/x, x—=0
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e Dynamics under study



Summary

e Long history of fruitful exchange of ideas between
population genetics, statistical physics, probability theory
(de Vladar+Barton 2011)

e Resolving Lewontin’s paradox: joint effect of several
factors including demography, fluctuating selection,
sweeps, ...; nonequilibrium population, consider dynamics

(Charlesworth+Jensen 2022)

e Considered stochastic models with time-dependent rates



