Genetic diversity in changing environments

Kavita Jain
(jain@jncasr.ac.in)
J. Nehru Centre, Bangalore
[with Sachin Kaushik (UNC), Parul Johri (UNC)]

Moran process (Moran 1958)

- Start with a single mutant (1), N-1 wild type (0)
- No further mutations are allowed
- Mutant fitness $=1+s$, wild type fitness $=1$
- $\operatorname{Prob}($ birth $) \propto$ fitness, $\operatorname{Prob}($ death $) \propto 1$

$$
\left.\begin{array}{c|cccccc}
\mathrm{t} & 0 & 1 & 0 & 0 & 0 & 1 \\
\mathrm{t}+1 & 0 & 1 & 1 & 0 & 0 & 1 \\
1
\end{array}\right] \begin{array}{ll}
p_{i \rightarrow i+1} & \propto \\
p_{i \rightarrow i-1} & \propto \\
(1+s) i \times(N-i) \\
(N-i) \times i
\end{array}
$$

- Two absorbing states: eventually none or all mutants

Fixation probability

- Starting with single mutant, prob eventually all mutants?
- Backward Fokker-Planck equation for $P\left(p, t ; x=1, t^{\prime}>t\right)$,

$$
-\frac{\partial P(p, t)}{\partial t}=\frac{s p(1-p)}{2} \frac{\partial P(p, t)}{\partial p}+\frac{p(1-p)}{2 N} \frac{\partial^{2} P(p, t)}{\partial p^{2}}
$$

- For boundary conditions, $P(0, t)=0, P(1, t)=1$,

$$
P\left(p=\frac{1}{N}, t \rightarrow \infty\right)=\frac{1-e^{-s}}{1-e^{-N s}} \approx \begin{cases}s & , N s \gg 1 \\ \frac{1}{N} & , s=0 \\ e^{-N|s|} & , N s \ll-1\end{cases}
$$

Mean sojourn time

- Mean \# of visits to a site before eventual absorption

- Mean time spent between x and $x+d x$, starting from p, before eventual absorption,

$$
G(p ; x)=\int_{-\infty}^{0} P(p, t ; x, 0) d t, 0<x<1
$$

where, $P(p, t ; x, 0)$ obeys the backward equation

Mean sojourn time

- Since

$$
-\frac{\partial P(p, t)}{\partial t}=a(p) \frac{\partial P(p, t)}{\partial p}+b(p) \frac{\partial^{2} P(p, t)}{\partial p^{2}}
$$

- Mean sojourn time is the Green's function,

$$
a(p) \frac{\partial G(p ; x)}{\partial p}+b(p) \frac{\partial^{2} G(p ; x)}{\partial p^{2}}=-\delta(x-p)
$$

with $G(0 ; x)=G(1 ; x)=0$

- Mean absorption time, starting from p,

$$
\int_{0}^{1} G(p ; x) d x
$$

Moran process: mean sojourn time

- Starting with single mutant, the mean sojourn time is

$$
G(p ; x) \stackrel{x>p \rightarrow 0}{=} \frac{1}{x(1-x)} \frac{1-e^{-N s(1-x)}}{1-e^{-N s}} \propto \begin{cases}\frac{1}{x(1-x)} & , N s \gg 1 \\ \frac{1}{x} & , s=0 \\ e^{-N|s|(1-x)} & , N s \ll-1\end{cases}
$$

Genetic diversity

- Data from 6 individuals, large number of sequenced loci

	Loci	1	2	3	4	5	6	7	8
\ldots									
1	0	1	0	0	0	0	1	0	\ldots
2	1	0	1	0	0	0	1	0	\ldots
3	0	1	1	0	0	1	1	0	\ldots
4	0	0	0	0	1	0	1	1	\ldots
5	0	0	1	0	0	0	1	0	\ldots
6	0	0	0	1	0	1	1	0	\ldots

- E.g., how many 'diverse' loci?
- What evolutionary forces shaped the diversity?

Site frequency spectrum

- $f(j, t)=$ Mean $\#$ of loci with $0<j<N$ mutants at time t ?

	1	2	3	4	5	6	7	8	\ldots
1	0	1	0	0	0	0	1	0	\ldots
2	1	0	1	0	0	0	1	0	\ldots
3	0	1	1	0	0	1	1	0	\ldots
4	0	0	0	0	1	0	1	1	\ldots
5	0	0	1	0	0	0	1	0	\ldots
6	0	0	0	1	0	1	1	0	\ldots
\# of 1 's	1	2	3	1	1	2	6	1	\ldots

- Measurable from data; $\sum_{j=1}^{N-1} f(j, t)=\#$ of diverse loci; \ldots

Modeling genetic diversity (Sawyer+Hartl 1992)

- Assume: independent evolution at each locus
- Stochastic (say, Moran) trajectories start with single mutant that arrive at different instants with rate $2 N \mu$
- No more mutations (assuming infinite loci)

Stationary state

- Trajecs lost due to absorption; created via new mutations

- Mean \# of loci with freq $0<x<1$ at large times?

$$
f(x, t \rightarrow \infty)=2 N \mu \int_{-\infty}^{0} P(p \rightarrow 0, t ; x, 0) d t \propto G(p \rightarrow 0 ; x)
$$

Moran process: Stationary state

- Assuming stationary state, SFS used to infer selection

- Mean number of 'diverse' loci,

$$
\int_{\frac{1}{N}}^{1-\frac{1}{N}} f(x) d x \approx 2 N \mu \times \begin{cases}2 \ln N & , N s \gg 1 \\ \ln N & , s=0 \\ \text { const } & , N s \ll-1\end{cases}
$$

Larger populations are more diverse

Diversity in nonequilibrium situations

- Dynamics of $f(x, t)$ in constant environments

How diversity varies with time? Relaxation to equilibrium?
(Evans et al. 2007; ...; Götsch+Bürger 2023)

- In time-inhomogeneous environments?

Effect of changing population size (Williamson et al. 2005
...), changing selection (Huerta-Sanchez et al. 2008;
Kaushik+KJ 2021), both (KJ+Kaushik 2022; Balick 2023)

Fokker-Planck equation with time-dependent rates

- Starting from $p \rightarrow 0$, we have

$$
f(x, t)=\int_{0}^{t} 2 N\left(t^{\prime}\right) \mu \times P\left(x, t ; p, t^{\prime}\right) d t^{\prime}
$$

- The forward Fokker-Planck equation for $f(x, t)$ is (Evans, Shvets, Slatkin 2007)

$$
\frac{\partial f(x, t)}{\partial t}=-s(t) \frac{\partial}{\partial x}\left[\frac{x(1-x) f(x, t)}{2}\right]+\frac{\partial^{2}}{\partial x^{2}}\left[\frac{x(1-x) f(x, t)}{2 N(t)}\right]
$$

- Mutational input modeled by a boundary condition:

$$
\operatorname{Lim}_{x \rightarrow 0} f(x, t)=\frac{2 N(t) \mu}{x}, \quad f(1, t)=\text { finite }
$$

Fokker-Planck equation with time-dependent rates

- Since inhomogeneous boundary condition, work with

$$
v(x, t)=x(1-x) f(x, t)-2 N(t) \mu(1-x)
$$

- Expand in an orthonormal basis (that obey bdry condns) with time-dependent coefficients,

$$
v(x, t)=\sum_{m} a_{m}(t) \psi_{m}(x)
$$

- Due to selection term, in general, $a_{m}(t)$ obeys a three-term recursion (Kimura 1964; KJ+Devi 2020)

$$
\frac{d a_{m}}{d t}=c_{+}(m) a_{m+1}+c_{-}(m) a_{m-1}+c_{0}(m) a_{m}
$$

Neutral case: exactly solvable (Evans et al. 2007)

- For $s=0$, we have

$$
\frac{\partial f(x, t)}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}\left[\frac{x(1-x) f(x, t)}{2 N(t)}\right]
$$

- Expand in eigenfunctions,

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\frac{x(1-x) \psi}{2}\right]=-\lambda \psi(x)
$$

given by Gauss hypergeometric function (Kimura 1955)
I. Periodically changing environment (KJ+Kaushik 2022)

- e.g., seasonal variations can affect fitness in plants
- demography due to, for e.g., prey-predator dynamics

Model parameters

$$
\frac{\partial f(x, t)}{\partial t}=-s(t) \frac{\partial}{\partial x}\left[\frac{x(1-x) f(x, t)}{2}\right]+\frac{\partial^{2}}{\partial x^{2}}\left[\frac{x(1-x) f(x, t)}{2 N(t)}\right]
$$

- In general,

$$
\begin{aligned}
s(t) & =\bar{s}+\sigma \sin (\omega t+\phi) \\
N(t) & =\bar{N}[1+\nu \sin (\Omega t+\Phi)]
\end{aligned}
$$

- Time scales: $\bar{N}, 1 / \bar{s}, \omega^{-1}=\Omega^{-1}$
- Slowly changing environment, $\omega^{-1} \gg \bar{N}, 1 / \bar{s}$
- Rapidly changing environment, $\omega^{-1} \ll \bar{N}, 1 / \bar{s}$
- At late times, $f(x, t)$ changes periodically; on averaging

$$
\bar{f}(x)=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} f(x, t) d t
$$

Slowly changing environment

- Adiabatic approx: $s \rightarrow s(t), N \rightarrow N(t)$ in stationary result

- In the absence of selection,

$$
f(x, t)=\frac{2 N(t) \mu}{x}, \bar{f}(x)=\frac{2 \bar{N} \mu}{x}
$$

Slowly changing environment

- But with selection, nonlinear dependence on N, s :

$$
f(x, t) \approx \begin{cases}\frac{2 N(t) \mu}{x(1-x)} & , N(t) s(t) \gg 1 \\ \frac{2 N(t) \mu}{x(1-x)} e^{-N(t)|s(t)| x} & , N(t) s(t) \ll-1\end{cases}
$$

- Only positive part of cycle contributes,

$$
\bar{f}(x)=\frac{1}{x(1-x)} \times \int_{0}^{2 \pi / \omega} 2 \mu N\left(t^{\prime}\right) \Theta_{H}\left[s\left(t^{\prime}\right)\right] \frac{d t^{\prime}}{2 \pi / \omega}
$$

Implications

$$
\bar{f}(x)=\frac{1}{x(1-x)} \times \int_{0}^{2 \pi / \omega} 2 \mu N\left(t^{\prime}\right) \Theta_{H}\left[s\left(t^{\prime}\right)\right] \frac{d t^{\prime}}{2 \pi / \omega}
$$

- Even if selection zero on average, $\bar{f}(x)$ still U-shaped
\Longrightarrow misinfer parameters if assume constant selection

- Lewontin's paradox (1974): Observed (neutral) diversity smaller than predicted using census pop size. Effective pop size captures joint effect of changing N and s (KJ+Kaushik 2022); lower diversity than average pop size

Rapidly varying environment

- In the absence of selection, using the exact solution,

$$
\bar{f}(x)=\frac{1}{x} \times\left[\int_{0}^{2 \pi / \omega} \frac{2 \mu}{N\left(t^{\prime}\right)} \frac{d t^{\prime}}{2 \pi / \omega}\right]^{-1}
$$

so that effective pop size is the harmonic mean

- With selection, numerical analyses suggest that stationary state results with average parameters (\bar{N}, \bar{s}) hold (but not always true)

Diversity in changing environment

- Varies non-monotonically with environmental frequency

- Max/min depends on other parameters (dominance coeff)
II. Selective sweep (Maynard Smith+Haigh 1974)
- Motivated by Lewontin's paradox of low diversity
- Consider Moran process for 2 physically linked loci W0, W1 have fitness $1 ; S 0, S 1$ have $1+s, s>0$

1	$W 0$	$W 0$	$W 0$	$S 1$
2	$W 0$	$W 0$	$W 0$	$S 1$
3	$W 1$	$W 1$	S1	S1
4	$W 1$	S1	S1	S1

- Due to selection at special site (provided S not lost), initial diversity in 0 s and 1 s is lowered

Selective sweep in asexuals (with Kaushik+Johri)

- As before: large number of loci; single 1 arises at new loci at different instants
- But now "interacting" loci as they are physically linked

1	W $000 .$.	W $000 .$.	W $0000 .$.	S $100 \ldots$
2	W $000 .$.	W $00 .$.	W $0000 .$.	S $100 \ldots$
3	W $000 .$.	S $10 \ldots$	S $100 \ldots$	S $110 .$.
4	S $10 \ldots$	S $10 .$.	S $110 \ldots$	S 110.

- Process stops when S is fixed in the population

Diversity in growing population

- Interested in diversity in S-subpopulation
- Full model has selection (W vs. S), fixed population size but within S-subpop, no selection but growing size, $N(t)$

$$
\begin{aligned}
& \text { S } 100 \text {... } \\
& \text { S } 110 \ldots \\
& \text { S } 10 \ldots \text { S } 100 \ldots \text { S } 100 \ldots \\
& \text { S } 10 \ldots \text { S } 10 \ldots \\
& \text { S } 110 \ldots \\
& \text { S } 110 \ldots
\end{aligned}
$$

Moran process with growing size

- Assume: independent evolution at each locus
- When S-subpop size remains same

t	0	1	0	0	0	1
$t+1$	0	1	1	0	0	$め$

- If increases, either type equally likely to be added

$$
\begin{array}{c|cccccc}
\mathrm{t} & 0 & 1 & 0 & 0 & 0 & 1 \\
\mathrm{t}+1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1
\end{array}
$$

- If decreases, either type equally likely to be removed

$$
\begin{array}{c|cccccc}
\mathrm{t} & 0 & 1 & 0 & 0 & 0 & 1 \\
\mathrm{t}+1 & 0 & 1 & 0 & 0 & \not & 1
\end{array}
$$

Fokker-Planck equation

- Change in frequency requires taking care of not only change in mutant number but also population size
E.g., $n_{t+1}=n_{t}, N_{t+1}=N_{t}+1, \ldots$
- The effective pop size is derived,

$$
\frac{\partial f(x, t)}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}\left[\frac{x(1-x) f(x, t)}{2 N_{e}(t)}\right]
$$

$N_{e}(t)$ is smaller than the naïve expectation, $N(t)$

On-fixation diversity

- At the end of the process when S has fixed,

$$
f\left(x, t_{f i x}\right) \sim\left\{\begin{array}{l}
1 / x, x \rightarrow 0 \\
1 / x^{2}, x \rightarrow 1
\end{array}\right.
$$

- Dynamics under study

Summary

- Long history of fruitful exchange of ideas between population genetics, statistical physics, probability theory (de Vladar+Barton 2011)
- Resolving Lewontin's paradox: joint effect of several factors including demography, fluctuating selection, sweeps, ...; nonequilibrium population, consider dynamics (Charlesworth+Jensen 2022)
- Considered stochastic models with time-dependent rates

