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Aggregation Is ubiquitous
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Aggregation Is ubiquitous

Bone marrow cancer cells

Liu et al, Phys. Rev. Res, 2021

Soot aggregates

Zhang et al, J. Quant Spect Radiative Transfer, 2020



Aggregation Is ubiquitous

Charged-polymers

Tom et al, J. Chem. Phys. (2017) \oid coalescence in ductile fracture

Pineau et al, Acta Materialia (2016)



Two features

e [wo kinetic processes
* [ransport to bring clusters together
* Aggregation on contact
e Modelling options
 Model both processes separately
 Combine them both into an effective collision kernel

* For example: ballistic transport

o vy =y | (r + 1)}



Model (Cluster-Cluster Aggregation)

Collision kernel

@ _—

e |nitial condition: M particles of mass 1

e Mass conserved; Number decreases with time

NoEelele

e Marcus-Lushnikov model



Kernel for ballistic particles

K(my,m,) & |v; — v, | (r; + rz)d_1

2y 20 1/d 1/d\d—1
~ \/v1 + vy (m;"" + m,")

Momentum conservation

—1 —1 1/d 1/d\d—1
K(my, my) ~ i+ m3 (ml! 4 m



The standard approach (a brief review)

e Mean mass distribution

e Smoluchowski coagulation equation (1917)
dN(m,t) 1

D D K(my,m)Nm)N(mp)&(m, + my—m) — Y K(m,m)N(m, )N(m,, 1)

a 2 m=1 m,=1 / m;=1 /

Gain term Loss term

e Appears to conserve mass

o0

<d ) _ = D D K(my, my)Nm)N(my)(m, +my) — Y Y K(m, m)mNm, ON(m,, 1)
d{m) — 0 Leyvraz, Phys. Rep 2003,
dt Aldous, Bernoulli, 1999,
Wattis, Physica D, 2006

e But not always true!



Smoluchowski Equation (Mass conservation)

e Consider mass flux from mass utmost m to greater than m

Jmy= Y ) K(my,my)mN(m)Nim,)

m;=1 my=m+1-m,

dnN(m)) =Jm—1) - J(m)
dt
dim) -
dr /(o)

e OnlyisJ_ = 0 will mass be conserved



Smoluchowski Equation (solution)

e Scaling solution (mass conservation)

1 m
N(m, 1) = %(t)2f</%(t) )»ﬁ <l K(hm,, hm,) = h’K(m,, m,)

e Substitute into Smoluchowski equation
e Can obtain scaling of (1)

e Cannot calculate f for arbitrary kernel



Smoluchowski Equation (solution)

e EXxact solution possible for three kernels
» Constant: K(m,m,) = A [A(t) ~ 1]

A
. Sum: K(my, m,) = E(ml +m,) [A(t) ~ €]

 Product: K(m,m,) = Am;ym,  [mass not conserved]



. N(m, 1) =

o (m?) diverges at t = 1 (gelation transition)

1
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Lushnikov Solution

A remarkable solution in terms of Mallows—Riordan polynomials

M
N(m, T) — e(m2—2mM+m)T(621 . l)m_lFm_l(ez’”)

m
AA Lushnikov, PRL 2004, Physica D 2006
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Summary of Smoluchowski equation

(=v-] U=\
v 4 :
| Product kernel
instaritaneous Y ) Ul
gelation K(ml’ m2) o o (m1 n, T 1 mz)
I @ H=V+ |
delayed
gelation
3 complete &
Instantaneous
SR gelation
no‘gelation < .
(no solution)
0@ -
T | S ~—__ U Wattis, Physica D, 2006

Constant kernel Sum kernel



What are the probabilities of rare events?

This question is unanswered despite the long history

N N

Typical

(Smoluchowski)

P(M,N,1)? P(M,N, t)?

Probability of (M-N)-th collision at

Probabillity of N particles at time t time t



Remainder of talk

o Will present
* A numerical algorithm that works for any kernel

* An analytical approach for constant, sum and
product kernels



Biased Monte Carlo simulations

X

e Example of random walks

t » Weight trajectory with ¢"*

 Modify trajectory by changing
one random number
X * Apply standard Metropolis rule to
choose between trajectory: an

equilibrium simulation between
t non equilibrium trajectories

 Unweight bias



Algorithm

e Evolution: A directed graph
e Waiting times between configurations @

e Jotal number of collisions @
t@t@ (4
(D) @sh @reaa) Ghed Qs



Algorithm
* [rajectory: a 0

directed path



Algorithm

 Transform locally
along loops




Ergodicity

 \We prove ergodicity of loop interchange move

* Any trajectory can be transformed into a standard
trajectory though only such reversible moves



Biasing the simulation

e Attaching weights to number of collisions/time
e |n addition to modifying trajectory
* Adding/deleting collisions
 Modify the weighting times
e Kernel independent
 Mostly rejection free



Benchmarking (constant kernel)

@i:ﬂ(M—i)(]zw—i—l)

o0 o0

P(M, N, ) = [
0

C-1
L%le_%lAtzo . .%C_le_‘%C—lAtC—lé ( Z Atl — t) .

1=0

dA%J

dAt, .. . [ dAt_, R e~ Fobh
0 t=0

Laplace transform and inverse Laplace tranform

C—-1 1 C—
P(V,N, 1) = (H@k)ze - H = 1%
“1,]

k=0 =0




Algorithm able to obtain LDF

Constant kernel

1e+20 | |
M=120
M=160
1le+10 M=240
S5 Exact _

1
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At MAt

Reproduces exact solution of P(M, N, t) (by biasing time)
V. Subashri et al, Computer Phys. Comm. 2023



Analytics (summary of resulits)

N N
For an arbitrary kernel: P(M, N, t) ~ exp [—Mf(M,Mt>] P = IY% T = Mt

e M — rate

o Exact expressions of f(¢, 7) for constant, sum, and product kernel

 EXxact expression for the instant trajectory for constant and sum kernel and some
regimes of product kernel

d’f(¢, 7)

For the product kernel, has a discontinuity for 7 2 1

. e




Constant Kernelj

i n’ Lo ) |
E——T‘F , n(0) =Lin(r) = ¢
20In¢ +In(1 — E) — pIn(—E + ¢?) — %, E <0, J )
0, E =0, | y
MO =9 _pe—2pmn2Ep - (1 - poin LN | V o
(1 qb)ln(\/ﬂf cosh T\/m sinh T\/ﬁ), E > 0. 0.; l - it?ffgg

E=0 = f=0 and Smoluchowski equation
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n(it) =2E—RLE—-1)e 2, n(r) =

Sum Kernel

z

¢

fh ) = — (1 = PIn(1 — =) + ’”f +ping+(1 - Pin(l — @)

0.7

‘M=240, p=0.5 +
Exact answer

+

5.5

0 |

 M=240, t=1.2
M=360, t=1.2
Exact action

0.2 0

304 0506070809 1
¥

n(T)

06}

0.5=*

b =0.5

0.9 4
08§ §

0.7 4

X () T=Tyyp/10

1=
T=5Tyy,
Exact answers




2.5

f(D,T)

058

0

Product Kernel
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Product kernel singularity

L)

=2

| | | .|
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Method of solution

e Start with master equation
 Follow Doi-Zeldovich procedure

* Introduce annihillation, creation operators to rewrite as
Schrodinger equation and derive effective Hamiltonian

 |ntroduce coherent states to derive effective action

<2k M>exp< Jdt(szym+E({y Z})+5(t)——21nyk(r)5(t T)>>

1 M
P(MaNa t) Nm'[@zl(t)gyl(t) Z

ki ko, doy=1

E(iz1, 1%} = — 52 K@, )y — 2297z ("Hamiltonian”, a constant of motion)
i

e Solve Euler-Lagrange equations with appropriate boundary conditions
e Evaluate o0 function by saddle point method



Conclusions and Outlook

Aggregation an infinite species system

Able to calculate LDF for standard kernels

 (Goes beyond the usual paradigm in aggregation

LDF singular for product kernel. Expect it to hold for gelling kernels

For product kernel different approaches give different action, and different LDF!
* (Correctness decided based on Lushnikov equation

|
-
-

u=v-1 u

V A

Mass distribution along trajectory can also be calculated
Product

Questions
e P(M,1,1)?

* Probability of fluctuations about instant trajectory?

Instantaneous

U=v+]

| G

delayed
gelation

complete &
Instantaneous
gelation

 LDF when there is an input of particles

no‘gelation

® k_nary CO”'S'OnS? & % (no solution) .
_ ()T I \ 7
* Other kernels numerically

Constant Sum



