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Overview

I Infinite range XY Model with random conjugate fields
1. The model
2. 0-temperature spin distribution (perturbative regime)
3. 0-temperature spin distribution (non-perturbative regime)
4. Metastable states
5. Timescales associated to the formation and orientation of cone

I Infinite range XY Model with random crystal fields
1. The model
2. 0-temperature spin distribution (perturbative regime)
3. 0-temperature spin distribution (non-perturbative regime)



Infinite range XY model with random fields



The model

m
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N=4

I Consider a lattice with N sites, at
each site i of which there is a spin

S i , |S i | = 1.
I Every spin S i interacts equally with

every other spin.
I At each site i there is a random field

hi , to which the spin S i is coupled
I The magnitude of the random field is

same at every site, but the direction
is random. Hence, we can write
hi = hmi , where mi is a unit vector.

I mi are distributed equally over a unit
circle.

H = − J
2N

( N∑
i=1

S i

)2

− h
N∑

i=1
mi · S i . (1)
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I Spin models with random fields have been studied in a variety of contexts 1

I Our focus: XY spin model with infinite range interaction in the presence of random fields.
(Applications can be found in the context of nueral networks 2 etc.)

I Phase diagram in general depends on the distribution of fields. For uniform distribution
see Fig. 1. Figure taken from 3

Figure: Solid line (triangled line) show locus of continuous (first order) phase transition.

We focus on 0-temperature distribution of spins

1A. I. Larkin (1970). Soviet Journal of Experimental and Theoretical Physics. 31, 784; S.
Fishman and A. Aharony (1979). Journal of Physics C: Solid State Physics. 12, L729

2N. Stroev and N. G. Berloff (2021). arXiv preprint arXiv:2103.17244
3Sumedha and M. Barma (2022). Journal of Physics A: Mathematical and Theoretical

55.9,095001



The arrangement
I In the limit h/J → 0, all the spins S i

point along the direction of vector sum
of fields (DVSF).

I For h/J << 1, all the spins fall within a
cone, such that the DVSF bisect the
cone.

I Further, the distribution is maximum
towards the edges of the cone and
minimum at the centre of the cone (i.e.
along the DVSF), despite the fact that
all spins point along the field-axis at
h/J = 0

I The cone widens with h/J , and the
phase transition occurs when h/J ' 0.64
and the cone angle φc ∼ 90o .
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0-temperature distribution of spins (perturbative regime)

H = − J
2N

( N∑
i=1

S i

)2

− h
N∑

i=1
mi · S i .

x

y

i

i

Si

mi

H = − J
2N

[ N∑
i=1

(cos(θi ) x̂ + sin(θi ) ŷ)
]2

− h
N∑

i=1
cos(θi − αi ).

I At h/J = 0, θi = θ(0) minimizes the energy.
I Setting ∂H/∂θi = 0, yields the following equations for extrema

J
N

N∑
j=1

sin(θi − θj) + h sin(θi − αi ) = 0. (2)

for i = 1, 2, ...,N



The equation for extrema is perturbatively solved by expanding θi as:

θi = θ(0) + h
J θ

(1)
i + h2

J2 θ
(2)
i + ...

To first order in h/J we have

N∑
j=1

(
θ

(1)
i − θ

(1)
j

)
+ N h

J sin(θ(0) − αi ) = 0. (3)

Summing the above over i yields

N∑
i=1

sin(θ(0) − αi ) = 0 =⇒ tan(θ(0)) =
∑N

j=1 sin(αi )∑N
j=1 cos(αi )

= tan(α0). (4)

where α0 is equal to the angle that the sum of the random fields, h = h
∑N

j=1 mj ,
makes with the x -axis.



Equation (3) is solved by

θ
(1)
i = sin(αi − θ(0)). (5)

Hence, we have

θi = θ(0) + h
J sin(αi − θ(0)) (6)

to first order in h/J .

Let P̃ and P be the probability distribution functions for αi and ∆θi = θi − θ(0),
respectively. If

P̃(αi ) = 1
2π , (7)

then

P(∆θi ) = 1
π
√

(h/J)2 −∆θ2
i

(8)
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P(∆θi ) = 1
π
√

(h/J)2 −∆θ2
i

Δθi=θi - θ
(0)

P(Δθi

h/J h/J

)

-

I For small values of h/J , the spin angles θi are distributed within a two
dimensional cone.

I The distribution is maximum towards the edges of the cone marked by the spins
for which ∆θi = ±h/J .

I Within the cone, the distribution is minimum at the center, when ∆θi = 0.
I The cone angle φc , defined here as the angular separation between the maxima of

the distribution (8), is given by

φc = 2h
J . (9)
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Numerical continuation to higher values of h/J

I When h/J << 1, we have θi = θ(0) + h
J sin(αi − θ(0))

I We numerically continue to higher values of h/J .
I The scheme fails to converge at the phase transition h/J ∼ 0.64.
I So we go to the other limit, J/h << 1, for which we have
θi = αi + J

hN
∑N

j=1 sin(αj − αi ),
I and continue for higher values of J/h.
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(a) Directions of the
quenched random fields

(b) Directions of spins S i
at h/J = 0.2

(c) Directions of spins S i
at h/J = 0.62

(d) Directions of spins S i
at h/J = 0.63
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(f) Histogram of distribution of spins
S i at h/J = 0.2.
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Metastable states

I Energy of minima-states as a
function of h/J is shown in the right

I Apart from the minima-states there are metastable states near the phase transition
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Cone formation and orientation times (Monte-Carlo simulation)

(h) Spins at t = 0 (i) Spins at t=19000 (j) Spins at t = 106 (k) θ0 vs time

Figure: Results of MC simulations. Number of spins N = 100. The black arrow shows the
direction of the sum of spins and the red arrow that of fields. h/J = 0.1 and temperature
T = 0.01

I There are two time scales in the system
I Time taken for the formation of cone tcf ∼ 1.9× 104 (increases with h/J).
I Time taken for the cone to orient in the right direction tco which varies with initial

condition. For the above case ∼ 106 (decreases with h/J).



0θTop: Angle of vector sum of spins vs time t
Bottom: Energy E vs time t 

t= 00 (cone formed) t= 00000 (cone rotated 
to the final position)

Top: Spins at t=19000
Bottom: Spins at t=800000
Red arrow shows the direction of 
vector sum of fields
Blac  arrow shows the direction of 
vector sum of spins

h/J =  and temperature = 0.01
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Large time evolution

H = − J
2N

( N∑
i=1

S i

)2

− h
N∑

i=1
mi · S i . (10)

I Set S i = S0. Then,

H = constant − S0 · h
N∑

i=1
mi︸ ︷︷ ︸

h0

= constant − S0 · h0 (11)

I Let S0 make an angle θ0 with the x -axis, and h0 and angle α0. We can write a dynamical
equation for θ0:

dθ0
dt = −γ ∂H

∂θ0
=⇒ dθ0

dt = −γ|h0| sin(θ0 − α0) (12)

I There is time scale 1/(γ|h0|) which decreases with the magnitude |h0|.
Note that |h0| quantifies how uneven the distribution of fields is.



Infinite range XY model with random crystal field

H = − J
2N

( N∑
i=1

S i

)2

− D
N∑

i=1
(ni · S i )2

I Studied in the context of amorphous magnets 4.
I Phase diagram is sensitive to the distribution of crystal fields 5.
I There is no phase transition at 0-temperature for uniform distribution of fields. 6

4R. Harris, M. Plischke, and M. J. Zuckermann (1973) Physical Review Letters 31, 160.
5K. H. Fischer and A. Zippelius (1985). Journal of Physics C: Solid State Physics. 18, 1139.
6Sumedha and M. Barma (2022). Physical Review E 105, 024111.



0-temperature distribution of spins (perturbation theory)

H =− J
2N

[ N∑
i=1

(cos(θi ) x̂ + sin(θi ) ŷ)
]2

− D
N∑

i=1
cos2(θi − βi ).

∂H
∂θi

= 0 =⇒ J
N

N∑
j=1

sin(θi − θj) + D sin(θi − βi ) = 0.

x

y

i

i

Si

in

B

I For D/J << 1

θi = θ(0) + D
J sin

[
2(βi − θ(0))

]
,

tan(2θ(0)) =
∑N

i=1 sin(2βi )∑N
i=1 cos(2βi )

. (13)
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π
√
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Δθi=θi - θ
(0)
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-

I For small values of D/J , the spin angles θi are distributed within a two
dimensional cone.

I The distribution is maximum towards the edges of the cone marked by the spins
for which ∆θi = ±D/J .

I Within the cone, the distribution is minimum at the center, when ∆θi = 0.
I The cone angle φc , defined here as the angular separation between the maxima of

the distribution (8), is given by

φc = 2D
J . (14)



(a) Random fields mi (b) Spins S i at D/J = 0.2 (c) Spins S i at D/J = 0.61(d) Spins S i at
D/J = 2.21
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Summary

Infinite range XY model with random field

I Arrangement of spins in the ordered phase (within a cone).
I Phase transition occurs when φc ∼ 90o

I Existence of metastable states
I Cone formation and cone orientation times.

Infinite range XY model with random crystal field

I 0-temperature arrangement of spins (within a cone)
I There is no phase transition
I Spins span a hemisphere when D →∞



Summary

Infinite range XY model with random field

I Arrangement of spins in the ordered phase (within a cone).
I Phase transition occurs when φc ∼ 90o

I Existence of metastable states
I Cone formation and cone orientation times.

Infinite range XY model with random crystal field

I 0-temperature arrangement of spins (within a cone)
I There is no phase transition
I Spins span a hemisphere when D →∞



Additional references
I A. Aharony (1975). Critical behavior of amorphous magnets. Phys. Rev. B 12, 1038.
I A. Bray and M. A. Moore (1985). Evidence for spin-glass behaviour in the random

anisotropy axis model. J. Phys. C: Solid State Phys. 18, L139.
I R. Harris and S. H. Sung (1978). Metastable states in the random anisotropy model

for amorphous ferromagnets. J. Phys. F: Met. Phys. 8, L299.
I C. Jayaprakash and S. Kirkpatrick (1980). Random anisotropy models in the Ising

limit. Phys. Rev. B 21, 4072.
I B. Derrida and J. Vannimenus (1980). The random anisotropy axis model in the

infinite-range limit. J. Phys. C: Solid State Phys. 13, 3261.
I V. K. Saxena (1981). Tricritical point in systems with randomly oriented local fields. J.

Phys. C: Solid State Phys. 14, L745.
I A. Aharony (1978). Tricritical points in systems with random fields. Phys. Rev. B 18,

3318.
I J. L. Cardy and S. Ostlund (1982). Random symmetry-breaking fields and the XY

model. Phys. Rev. B 25, 6899.
I C. Lupo, G. Parisi, and F. Ricci-Tersenghi (2019). The random field XY model on

sparse random graphs shows replica symmetry breaking and marginally stable
ferromagnetism. J. Phys. A: Math. Theor. 52, 284001.


