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e Correlated gas in thermal equilibrium: examples and observables
e Correlated gas in nonequilibrium stationary state created by resetting

e Exact results for various observables: average density, extreme and
order statistics, gap statistics, full counting statistics

e Summary and Conclusion
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One dimensional Correlated Gas
In
Thermal Equilibrium
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Correlated gas in thermal equilibrium

V(x)
N particles on a line with coordinates
- {X17X2, R 7X/\/}
V(x) — external confining potential
0
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Correlated gas in thermal equilibrium

V(x)
N particles on a line with coordinates
- {X17X2, R 7X/\/}
V(x) — external confining potential
0

Energy of the gas:

E[{x}] = Z V(xi)+ > Vol x) + Y Valxi g, x) + ..

i) i#j#k
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Correlated gas in thermal equilibrium

V(x)
N particles on a line with coordinates
- {X17X2, R 7X/\/}
V(x) — external confining potential
0

Energy of the gas:

E[{x}] = Z V(xi)+ > Vol x) + Y Valxi g, x) + ..

i) i#j#k

In thermal equilibrium, the joint distribution of the particle positions:

1 _ o
P(x1,%2, ..., xn) = ?e B Eli}]
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Correlated gas in thermal equilibrium

V(x)
N particles on a line with coordinates
- {X17X2, R 7X/\/}
V(x) — external confining potential
0

Energy of the gas:

E[{x}] = Z V(xi)+ > Vol x) + Y Valxi g, x) + ..

i) i#j#k

In thermal equilibrium, the joint distribution of the particle positions:

1 )
P(xi,x2,...,xn) = = e PELA £ p(x)p(x2) . . . p(xw)

No factorization in the presence of interactions
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Observables of interest

V) k-th gap: dl\:MFMt\H

Given the joint distribution:
1 —BE)]

P(X17X27...7XN):*6 !
4

My 0 My M, M '
o
—
L +L
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Observables of interest

V) k-th gap: dl\:MFMt\H

Given the joint distribution:
1 —BE)]

P(X17X27...7XN):*6 !
4

My 0 My M, M '
o
—
L +L

N
e Average density: p(x, N) = %Z(o‘(x,- —x))
i—1
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Observables of interest

V) k-th gap: dl\:MFMt\H
Given the joint distribution:
1 el
P(X17X27...7XN):*6 !
Z
My 0 M3 M, M X
o4
L +L
N
e Average density: p(x, N) NZ — X))
e Order statistics: {x1,xo, ..., XN_} — {My > My > Ms > ... > My}
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Observables of interest

k-th gap: d.= M,-M

V(X) k+l
Given the joint distribution:
1 —BE)]
P(X17X27...7XN):*6 !
4
My 0 M, M, M X
o4
L +L
N
e Average density: p(x, N) NZ — X))
e Order statistics: {x1,xo, ..., XN_} — {My > My > Ms > ... > My}

e Gap/spacing statistcs: dy = My — My; — k-th gap
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Observables of interest

k-th gap: d.= M,-M

V(X) k+1
Given the joint distribution:
1 —8EM)
P(X17X27...7XN):*6 !
V4
My 0 M, M, M X
o4
L +L
N
e Average density: p(x, N) NZ — X))

e Order statistics: {x1,xo, ..., XN_} — {My > My > Ms > ... > My}
e Gap/spacing statistcs: dy = My — My; — k-th gap

e Full counting statistics: Prob.[N,, N| where N, denotes the number of
particles in the interval [—L, L]
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Observables of interest

k-th gap: d.= M,-M

V(X) k+l
Given the joint distribution:
1 —BE)]
P(X17X27...7XN):*6 !
4
My 0 M, M, M X
o4
L +L
N
e Average density: p(x, N) NZ — X))
e Order statistics: {x1,xo, ..., XN_} — {My > My > Ms > ... > My}

e Gap/spacing statistcs: dy = My — My; — k-th gap

e Full counting statistics: Prob.[N,, N| where N, denotes the number of
particles in the interval [—L, L]

Generally hard to compute for a correlated /interacting gas !



Ideal gas: no interaction

kthgap: d,=M-M,, In the absence of interactions
N

Energy: El{xH] = > V(x)
i=1

Joint distribution factorises (i.i.d)

P({xi}) = p(a)p(x2) - . p(xw)

_ e~ BV
- f dx’e—B V(x')

4, 4 where p(x)
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kthgap: d,=M-M,, In the absence of interactions
N

Energy: El{xH] = > V(x)
i=1

Joint distribution factorises (i.i.d)

P({xi}) = p(a)p(x2) - . p(xw)

_ e~ BV
- f dx’e—B V(x')

4, 4 where p(x)

All observables are exactly computable in terms of p(x)
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Ideal gas: no interaction

kthgap: d,=M-M,, In the absence of interactions
N

Energy: El{xH] = > V(x)
i=1

Joint distribution factorises (i.i.d)

P({xi}) = p(a)p(x2) - . p(xw)

_ e~ BV
- f dx’e—B V(x')

4, 4 where p(x)

All observables are exactly computable in terms of p(x)

N
o Average density: p(x, N) = > (5(x — x)) = p(x)
i=1
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Ideal gas: no interaction

kthgap: d,=M-M,, In the absence of interactions
N

Energy: El{xH] = > V(x)
i=1

Joint distribution factorises (i.i.d)

P({xi}) = p(a)p(x2) - . p(xw)

_ e~ BV
- f dx’e—B V(x')

4, 4 where p(x)

All observables are exactly computable in terms of p(x)

N
o Average density: p(x, N) = > (5(x — x)) = p(x)
i=1

N
e Distribution of the maximum My: Prob.[M; < w] = [LW p(x") dx’]
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Ideal gas: no interaction

kthgap: d,=M-M,, In the absence of interactions
N

Energy: El{xH] = > V(x)
i=1

Joint distribution factorises (i.i.d)

P({xi}) = p(a)p(x2) - . p(xw)

_ e~ BV
- f dx’e—B V(x')

4, 4 where p(x)

All observables are exactly computable in terms of p(x)

N
o Average density: p(x, N) = > (5(x — x)) = p(x)
i=1

N
e Distribution of the maximum My: Prob.[M; < w] = [LWOC p(x") dx’]

e Distribution of the k-th maximum M and k-th gap di
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Ideal gas: no interaction

kthgap: d,=M-M,, In the absence of interactions
N

Energy: El{xH] = > V(x)
i=1

Joint distribution factorises (i.i.d)

P({xi}) = p(x1)p(x2) - .. p(xn)

_ e~ BV
- f dx’e—B V(x')

4, 4 where p(x)

All observables are exactly computable in terms of p(x)

N
o Average density: p(x, N) = > (5(x — x)) = p(x)
i=1

N
e Distribution of the maximum My: Prob.[M; < w] = [LWOC p(x") dx’]
e Distribution of the k-th maximum M and k-th gap di

e Full counting statistics: Prob.[N;, N] = (,C/L) q N (1 — g )N=Ne where

L / /
qL= |, p(x’) dx



Example 1 of a correlated gas: Dyson’s log-gas

V(x)
Energy:
N 1
E[{xi}] = %ZX? 3 Z log [x; — x;
i=1 i#j
pairwise logarithmic repulsion Dyson, 1962
0
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Example 1 of a correlated gas: Dyson’s log-gas

V(x)
Energy:
N 1
E[{xi}] = %ZX? 3 Z log [x; — x;
i=1 i#j
pairwise logarithmic repulsion Dyson, 1962
0

X

Consider an (N x N) Gaussian Hermitian random matrix H;; whose
entries are distributed via:

Prob.[H] ocexp | —N Z\H,-j|2 o exp [-NTr (H' H)]
i

= invariant under unitary rotation (change of basis) (GUE)
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Example 1 of a correlated gas: Dyson’s log-gas

V(x)
Energy:
N 1
E[{xi}] = %ZX? 3 Z log [x; — x;
i=1 i#j
pairwise logarithmic repulsion Dyson, 1962
0

X

Consider an (N x N) Gaussian Hermitian random matrix H;; whose
entries are distributed via:

Prob.[H] ocexp | —N Z\H,-j|2 o exp [-NTr (H' H)]
i
= invariant under unitary rotation (change of basis) (GUE)

N real eigenvalues: {\1, A2,..., Ay} — strongly correlated
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Dyson’s log-gas

Joint distribution of eigenvalues of an (N x N) Gaussian Hermitian
random matrix (Wigner, 1951):

PN }) = Z; exp

N
/VZ/\?] TTx =P
i=1

i<j
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Dyson’s log-gas

Joint distribution of eigenvalues of an (N x N) Gaussian Hermitian
random matrix (Wigner, 1951):

PN }) = Z; exp

N
/VZ/\?] TTx =P
i=1

i<j

N
ocexp | — | NI N = Tlog |\ — Al | | oc e 2EL)
i=1 i#j
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Dyson’s log-gas

Joint distribution of eigenvalues of an (N x N) Gaussian Hermitian
random matrix (Wigner, 1951):

PN }) = Z; exp

N
NZ)\,?] T[T =M1
i=1

i<j

N
ocexp | — | NI N = Tlog |\ — Al | | oc e 2EL)
i=1 i#j

Hence one can identify the eigenvalues {1, Ao, ... Ay} = {x1, %0, ..., xn}
as the positions of a 1-d gas of N particles with pairwise log-repulsion
with =2 (Dyson, 1962)

Most of the observables can be computed exactly = not that easy !
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Observables in the log-gas model

/-)N‘()\)

(3 -Tracy-Widom (TW)

1
Pse(N) = —V2 = A2
™
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Observables in the log-gas model

/-)N‘()\)

(3 -Tracy-Widom (TW)

1
Pse(N) = —V2 = A2
™

I

e Average density (N — oo limit): p(x, N) = py(A) — 2 V2 — A2
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Observables in the log-gas model

/-)N‘()\)

(3 -Tracy-Widom (TW)

1
Pse(N) = —V2 = A2
™

I

e Average density (N — oo limit): p(x, N) = py(A) — 2 V2 — A2

e Largest eigenvalue — Tracy-Widom distribution
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Observables in the log-gas model

PN (A)

1 I (3 -Tracy-Widom (TW)

FocN) = =2 X2
by

/
V2 +V2 A

e Average density (N — oo limit): p(x, N) = py(A) — £ V2 — A2
e Largest eigenvalue — Tracy-Widom distribution

Similarly, other observables are also known = huge literature

S.M., A. Pal, G. Schehr, “Extreme value statistics of correlated random
variables: A pedagogical review”, Phys. Rep. 840, 1 (2020).
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Ex 2: Jellium model in 1-d

Energy: Density
N ¥
O(1/N)
N? 2 !
E[{x}] = TZX,- -« NZ\X,- — X
i=1 i#j
. . A | Right Large
1-d Coulomb (linear) repulsion L‘eflLIarge ‘de%iatiung
deviation_ !
Lenard, 1961; Prager, 1962; Baxter, 1963 ... 1 yl
lo
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Ex 2: Jellium model in 1-d

Energy: Density
N ¥
O(1/N)
N2 2 !
E[{x}] = TZX,- -« NZ\X,- — X
i=1 i#j
. . A | Right Large
1-d Coulomb (linear) repulsion b::";‘é‘ée ide%iatiung
Lenard, 1961; Prager, 1962; Baxter, 1963 ... 1 yl (
lo

- —
-2 Ju T

Again most of the observables can be computed (at least for large N)
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Ex 2: Jellium model in 1-d

Energy: Density
N ¥
O(1/N)
N2 2 !
E[{x}] = TZX,- -« NZ\X,- — X
i=1 i#j
. . A | Right Large
1-d Coulomb (linear) repulsion b::";‘é‘ée ide%iatiung
Lenard, 1961; Prager, 1962; Baxter, 1963 ... 1 yl (
lo

- —
-2 Ju T

Again most of the observables can be computed (at least for large N)

e Average density p(x, N) — ;= for —2a < x < 2a — flat density
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Ex 2: Jellium model in 1-d

Energy: Density
N
O(1/N
N? 2 !
Ellxl = 3¢ —a Nl —
i=1 i#j
. . A | Right Large
1-d Coulomb (linear) repulsion L‘eflLIarge ‘de%iatiung
deviation :
Lenard, 1961; Prager, 1962; Baxter, 1963 ... 1 yl (
o
N

-2 Ju T

Again most of the observables can be computed (at least for large N)
e Average density p(x, N) — ;= for —2a < x < 2a — flat density

e Extreme, order, gap, full counting statistics = recently computed

Dhar, Kundu, S.M., Sabhapandit, Schehr, PRL, 119, 060601 (2017); J. Phys. A: Math. Theor.
51, 295001 (2018)

Flack, S.M., Schehr, J. Stat. Mech. 053211 (2022)
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Ex 3: harmonically confined Riesz gas in 1-d

X, Xp X3 oot XN Energy function (with k > —2):

confining

N
parabolic E[{x.}] = 1 X2 + Jsgn(k) 1
/pOtential [a] 2 ; f 2 ;lx,'xjk

M. Riesz, 1938
Recent survey: M. Lewin, 2022
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Ex 3: harmonically confined Riesz gas in 1-d

X3 ...... XN

confining
parabolic
s potential

Special cases:

k = —1 (Jellium model), k — 0" (Log-gas) and k = 2 (Calogero model)

Energy function (with k > —2):

N
Jsgn(k
Elpall =3 7+ 2593 mip
i=1

i#]

M. Riesz, 1938
Recent survey: M. Lewin, 2022
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Ex 3: harmonically confined Riesz gas in 1-d

confining
parabolic
s potential

Special cases:

k = —1 (Jellium model), k — 0" (Log-gas) and k = 2 (Calogero model)

Energy function (with k > —2):

N
Jsgn(k
Elpall =3 7+ 2593 mip
i=1

i#]

M. Riesz, 1938
Recent survey: M. Lewin, 2022

Average density p(x, N) in the large N limit

— computed recently for all kK > —2

Agarwal, Dhar, Kulkarni, S.M., Mukamel, Schehr, PRL, 123, 100603 (2019)
Kethepalli et. al., J. Stat. Mech., 103209 (2021); J. Stat. Mech. 033203 (2022)

Santra et. al. PRL, 128, 170603 (2022)
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Nonequilibrium Stationary State
induced by
Stochastic Resettting
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Search problems are ubiquitous

protein ™ i _o Ut » p ¥ j
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Other examples of stochastic resetting

e Searching for the global minimum in a complex energy landscape via
simulated annealing

empirical observation: Resetting to the initial configuration from time
to time (and starting afresh) helps finding new pathways out of a
metastable configuration

Local Minima [

\
Global Minima

Saddle Point
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Diffusion with stochastic resetting: A simple model

I — resetting rate

X
Poissonian resetting
§ Time intervals between successive
g / , : et .
2 p e S resettings distributed as:
/r A\ () o
e T)=re
0 N A \jr J v\,\ﬂl‘r t p
time —
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Diffusion with stochastic resetting: A simple model

I — resetting rate

Poissonian resetting

Time intervals between successive
/ resettings distributed as:

space
N

rT

ok /i ] e \‘\ “f L ‘,/ p(T) —re

Dynamics: In a small time interval At
x(t+ At)=0 with prob. rAt (resetting)
=x(t) +n(t) At  with prob. 1 —rAt  (diffusion)
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Diffusion with stochastic resetting: A simple model

I — resetting rate

Poissonian resetting

Time intervals between successive

A //r // resettings distributed as:
ir : —rT
0 /' & v . = i p(r)=re

time —

space —

Dynamics: In a small time interval At
x(t+ At)=0 with prob. rAt (resetting)
=x(t) +n(t) At  with prob. 1 —rAt  (diffusion)
n(t) — Gaussian white noise: (1(t)) =0 and (n(t)n(t')) =2D(t — t’)
[M.R. Evans & S.M., PRL, 106, 160601 (2011)]
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Prob. density p,(x, t) with resetting rate r > 0

I —- resetting rate

pr(x,t) — prob. density at time t,
given py(x,0) = 5(x)

space
.
N

e In the absence of resetting (r = 0):

po(x, t) = 4;Dt exp[—x2/4Dt]
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Prob. density p,(x, t) with resetting rate r > 0

I —- resetting rate

pr(x,t) — prob. density at time t,
given py(x,0) = 5(x)

space
.
N

e In the absence of resetting (r = 0):

po(x, t) = \/ﬁ exp[7X2/4Dt]

e In the presence of resetting (r > 0):

pr(x,t) =7
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Fokker-Planck (Master) Equation

Fokker-Planck Equation:

Oepr(x,t) = DO2p.(x,t) — rp(x, t) + ré(x) /p,(x/, t)dx’

Initial Cond.: p,(x,0) = d(x)
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Fokker-Planck (Master) Equation

Fokker-Planck Equation:

Oepr(x,t) = DO2p.(x,t) — rp(x, t) + ré(x) /p,(x/, t)dx’

Initial Cond.: p,(x,0) = d(x)

Using the normalization [ p,(x',t)dx’ =1

S.N. Majumdar Correlated Resetting Gas



Fokker-Planck (Master) Equation

Fokker-Planck Equation:

Oepr(x,t) = DO2p.(x,t) — rp(x, t) + ré(x) /p,(x/, t)dx’

Initial Cond.: p,(x,0) = d(x)

Using the normalization [ p,(x',t)dx’ =1

Orpr(x,t) = DO2p (x,t) — rp.(x,t) + rd(x)

Initial Cond.: p,(x,0) = d(x)
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Fokker-Planck (Master) Equation

Fokker-Planck Equation:

Oepr(x,t) = DO2p.(x,t) — rp(x, t) + ré(x) /p,(x/, t)dx’

Initial Cond.: p,(x,0) = d(x)

Using the normalization [ p,(x',t)dx’ =1

Orpr(x,t) = DO2p (x,t) — rp.(x,t) + rd(x)

Initial Cond.: p,(x,0) = d(x)

This linear equation can be solved at all t exactly by Fourier transform
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Exact solution valid at all times ¢
T —- resetting rate

T |
g 1
= | i
0 Tt g ———_r &
time — T
e Exact solution at all times t:
ot
plxit) = pulx,t) + [ dr (e ) pol)
Jo

where po(x,7) = diffusion propagator = \/ﬁ exp[—x?/4Dr]
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Exact solution valid at all times ¢
T —- resetting rate

A s |
: T—r t

T

space —

time —

e Exact solution at all times t:

ot

pr(x,t) = e "t po(x,t)+ ./o dr(re™"") po(x,7)

where po(x,7) = diffusion propagator = \/ﬁ exp[—x?/4Dr]

Renewal interpretation: 7 — time since the last resetting during which
= free diffusion

S.N. Majumdar Correlated Resetting Gas



Exact solution valid at all times ¢

T —- resetting rate

space —

A s |
: T—r it

time — T

e Exact solution at all times t:

ot

pr(x,t) = e "t po(x,t)+ ./o dr(re™"") po(x,7)

where po(x, 7) = diffusion propagator = \/ﬁ exp[—x2/4Dr]
Renewal interpretation: 7 — time since the last resetting during which
= free diffusion

e Ast— o0, pii(x)=r [ po(x,7)e T dT =% exp[—ap |x|]

where ag = +/r/D



Stationary State — Nonequilibrium

Exact solution — | pi*(x) = o exp[—ag |x|] | with ag = \/r/D
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Stationary State — Nonequilibrium

Exact solution — | p5*(x) = o exp[—ao |x|] | with ag = \/r/D

2
— nonequilibrium stationary state
P o (NESS)
N = current carrying with

detailed balance — violated

_— T pMx) = ag expl—Ver(x)]
effective potential: «p|x|
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Stationary State

— Nonequilibrium

with ag = +/r/D

— nonequilibrium stationary state

(NESS)

= current carrying with
detailed balance — violated

pit(x) = o exp[— Vet ()]
effective potential: «p|x|

Recent experiment using holographic

Tal-Friedman, Pal, Sekhon, Reuveni, & Roichman

J. Phys. Chem. Lett. 11, 7350 (2020)

H st _ |
Exact solution — | p;*(x) 5 exp[—apo |x|]
st
P o
N
_ L _
X
0.3 -
Experiment ® (a)
P Theory /% optical tweezers
= VAN
0.1 7 =
= by
,// iy,
g i = s,
ok= -
-6 -4 -2 o] 2 4 (3
X ()
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Generalisations to many-body systems
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Stochastic Resetting in a nutshell

x(t)

‘/ﬁk\///«ﬁ\ ;
=3 S t—

t t, t,

e Consider any process x(t) evolving freely by its own dynamics
(deterministic or stochastic) during a certain random interval of time

e At the end of this random period, the process is reset to its initial
position (or some randomly chosen position) and the its dynamics
restarts afresh

e The interval of free evolution between resets is drawn independently
from a distribution p(7) = renewal process

e For Poissonian resetting with a constant rate r: p(7) =re "
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Generalisation to many-body system

Consider any many-body system (with interaction) evolving under its own
stochastic dynamics

S.N. Majumdar Correlated Resetting Gas



Generalisation to many-body system

Consider any many-body system (with interaction) evolving under its own
stochastic dynamics = subjected to resetting to its initial configuration
at a constant rate r

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.
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Generalisation to many-body system

Consider any many-body system (with interaction) evolving under its own
stochastic dynamics = subjected to resetting to its initial configuration
at a constant rate r

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration C: {Hi, Ha,..., H } — heights of an (1 + 1)-dim
KPZ/EW interface
{s1,%,...,5.} — spins in Ising model
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Generalisation to many-body system

Consider any many-body system (with interaction) evolving under its own
stochastic dynamics = subjected to resetting to its initial configuration
at a constant rate r

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration C: {Hi, Ha,..., H } — heights of an (1 + 1)-dim
KPZ/EW interface
{s1,%,...,5.} — spins in Ising model

P.(C,t) — Prob. that the system is in config. C at time t
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Generalisation to many-body system

Consider any many-body system (with interaction) evolving under its own
stochastic dynamics = subjected to resetting to its initial configuration
at a constant rate r

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration C: {Hi, Ha,..., H } — heights of an (1 + 1)-dim
KPZ/EW interface
{s1,%,...,5.} — spins in Ising model

P.(C,t) — Prob. that the system is in config. C at time t

Renewal equation: Setting 7 — time since last resetting before t

-t

PL(C,t) = e "t Po(C, t)+/0 dr(re="7) Po(C,7)

[S. Gupta, S.M., G. Schehr, PRL, 112, 220601 (2014)]
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Generalisation to many-body system

Consider any many-body system (with interaction) evolving under its own
stochastic dynamics = subjected to resetting to its initial configuration
at a constant rate r

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration C: {Hi, Ha,..., H } — heights of an (1 + 1)-dim
KPZ/EW interface
{s1,%,...,5.} — spins in Ising model

P.(C,t) — Prob. that the system is in config. C at time t

Renewal equation: Setting 7 — time since last resetting before t

PL(C,t) = e "t Po(C, t)+/0td7(re—'T)Po(c,T)

[S. Gupta, S.M., G. Schehr, PRL, 112, 220601 (2014)]

As t — 00, the nonequilibrium stationary state:

Ps(C) _/Ooo dr (re="T) Po(C,7)
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Correlated Resetting Gas
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Recent Experiments on Stochastic Resetting

Recent experiments on stochastic resetting using optical traps set-up:
Tal-Friedman, Pal, Sekhon, Reuveni, Roichman, J. Phys. Chem. Lett. 11, 7350 (2020)
Besga, Bovon, Petrosyan, S.M., Ciliberto, Phys. Rev. Res. 2, 032029 (2020) —> 1-dimension

Faisant, Besga, Petrosyan, Ciliberto, S.M. J. Stat. Mech. 113203 (2021) — 2-dimension

10 | B H—
_ W
g 05 /
A A /
N vl &‘_‘J&U Loln e A
= "
-05
a0 05 Lo 15 20

time (s}

S.N. Majumdar Correlated Resetting Gas



Experimental protocols for resetting

1. Free diffusion for a certain period (deterministic or random)

2. Switch on an optical harmonic trap and the let the particle relax
to its equilibrium distribution using Enginnered Swift Equilibration
(ESE) technique = mimics instantaneous resetting

Steps 1 and 2 alternate ...

trap switched on

space

0 [ Y M e -
M time

free diffusion
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Correlated resetting gas

time

© space —

Consider N Brownian motions (independent) that are simultaneously

reset with rate r to the origin
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Correlated resetting gas

© space —

time

Consider N Brownian motions (independent) that are simultaneously
reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary
state (NESS) at long times
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Correlated resetting gas

© space —

time

Consider N Brownian motions (independent) that are simultaneously
reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary
state (NESS) at long times

7><i2/4D7

, N

> 1
Pt ({x; :r/ dre " —
A(CHES Il 75
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Correlated resetting gas

© space —

time

Consider N Brownian motions (independent) that are simultaneously
reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary
state (NESS) at long times

Pt ({x:}) / dTe*”H\/W

The joint distribution does not factorize =—> correlated resetting gas

7><i2/4D7

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Solvable Correlated Gas

Joint distribution:

space ——

N
Pt ({xih) = r J™ dr e~ [ o)
i=1
0 pO(X’ 7') _ \/# ein2/4DT

time —

In this model, interactions between particles are not built-in, but the
correlations are generated by the dynamics (simultaneous resetting),
that persist all the way to the stationary state
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Solvable Correlated Gas

Joint distribution:

space ——

N
Pt ({xih) = r J™ dr e~ [ o)
i=1
0 pO(X’ 7') _ \/# ein2/4DT

time —

In this model, interactions between particles are not built-in, but the
correlations are generated by the dynamics (simultaneous resetting),
that persist all the way to the stationary state

The gas is strongly correlated in the NESS

(x,-2xj2> — (x?) <xj2> = 4%2 — attractive all-to-all interaction
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Solvable Correlated Gas

Joint distribution:

5 N
i o 1 2
pst xi}) = r/ dre T e X /4Dt
(= [ s
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Solvable Correlated Gas

Joint distribution:

5 N
i o 1 2
pst xi}) = r/ dre T e X /4Dt
(= [ s

Despite strong correlations, several physical observables can be
computed exactly in the NESS = (Solvable)

e Compute any observable for the ideal gas = I.1.D variables with
distribution po(x, 7) parametrized by 7 = easy

—rT

e Average over the random parameter 7 using p(7) = re
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Solvable Correlated Gas

Joint distribution:

5 N
i o 1 2
pst xi}) = r/ dre T e X /4Dt
(= [ s

Despite strong correlations, several physical observables can be
computed exactly in the NESS = (Solvable)

e Compute any observable for the ideal gas = I.1.D variables with
distribution po(x, 7) parametrized by 7 = easy

—rT

e Average over the random parameter 7 using p(7) = re

Examples:
e Average density
e Distribution of the k-th maximum: Order statistics
e Spacing distribution
e Full Counting Statistics
M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)



Average Density

px,N)

Joint distribution:

N
P ({xi})=r [y~ dT e*’THPo(XiaT)

i=1
_ 1 —x? /4Dt
po(x,7) = Zirpm e/
0 t A
M, ~+y/InN

Average density:

N
p(x, N) = %Z(é(x,- —x)) = /Pft (x, X2, ..., xn) dxadxs ... dxy
i=1
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Average Density

px,N)

Joint distribution:

N
P (bt) = 1 J5~ dr e [T polx7)

_ 1 —x? /4Dt
po(x,7) = Zirpm e/

Average density:

N
p(x, N) = %Z(é(x,- —x)) = /Pft (x, X2, ..., xn) dxadxs ... dxy
i=1

— X0

=r ]ox dre "7 po(x,7) 5 exp[—ag |x|]

where ag = +/r/D

—> same as the single particle position distribution
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Order Statistics

px,N)

M) = k-th maximum
Set k=aN

a ~ O(1) = bulk
a~ O(1/N) = edge

M, ~+y/InN
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Order Statistics

px,N)

M) = k-th maximum
Set k=aN

a ~ O(1) = bulk
a~ O(1/N) = edge

0 t X
M, ~+y/InN

e Bulk: Prob.[My = w] = 55 7 (2% ) where A(a) = /2 exfe ™ (20)
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Order Statistics

px,N)

M) = k-th maximum
Set k=aN

a ~ O(1) = bulk
a~ O(1/N) = edge

0 [
M, ~+y/InN

e Bulk: Prob.[My = w] = 55 7 (2% ) where A(a) = /2 exfe ™ (20)

e Edge: Prob.[M, = w] ~ ﬁ f (ﬁ) where Ly = /420N

r
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Order Statistics

px,N)

M) = k-th maximum
Set k=aN

a ~ O(1) = bulk
a~ O(1/N) = edge

0 t X
M, ~+y/InN

e Bulk: Prob.[My = w] = 55 7 (2% ) where A(a) = /2 exfe ™ (20)

e Edge: Prob.[M, = w] ~ ﬁ f (ﬁ) where Ly = \/@

The scaling function f(z) = 2ze 7 0(z) = universal (indep. of «)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Order Statistics

My P(M, )

" M m SO

Iy r,l—\ N="T30

0.8 .:,-: \\ A = IO

1 |" ."-,'

= .'lI ! =02
f - a=04

(a) MLJ"."\.(({}

e Bulk: Prob.[M) = w]

Q

i f (L)) where A(a) = \/j -
e Edge: Prob.[My = w]~ £ f (ﬁ) where Ly = \/m

The scaling function f(z) = 2z 0(z) = universal (indep. of )

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Gap/Spacing Statistics

p(x,N)

M) —> k-th maximum
Set k=alN

a ~ O(1) = bulk
a~ O(1/N) = edge
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Gap/Spacing Statistics
pN)
M) —> k-th maximum
Set k=aN
a ~ O(1) = bulk
O(1/N) = edge

e Bulk: Prob.[dx = g] =

,\Nl(a) h (%) where A\y(a) = b\[N with
b =exp (—[erfcfl( a)?) /VarD
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Gap/Spacing Statistics
pN)
M) —> k-th maximum
Set k=aN
a ~ O(1) = bulk
O(1/N) = edge

M, ~+/lnN

e Bulk: Prob.[dx = g] =

,\Nl(a) h (%) where A\y(a) = b\[N with
b =exp (—[erfcfl( a)?) /VarD

D
i h (/fk)) where Iy(k) = ﬁm

e Edge: Prob.[dx = g] =~
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Gap/Spacing Statistics

p(x,N)

M) —> k-th maximum

Set k=alN

a ~ O(1) = bulk
O(1/N) = edge

M, ~+/lnN

e Bulk: Prob.[dy = g] = )\Nl(a) h (%) where Ay(a) = b\[N with
b =exp (—[erfcfl( a)]?) /V/ArD

g () where In(k) = \/+2By

The scaling function h(z) =2 [ due™" =z/u (2>0)
= universal (indep. of a)

e Edge: Prob.[dx = g] =~ /N%

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Gap/Spacing Statistics

A P(dy)
o T The gap scaling function:
\\\_\k v h(z) =2 [ due ==/
.y h(z) = /7 as z— 0
s o h(z) ~ exp[—3(z/2)?/3] as z — oo
{b") ‘ - dy .-";ih,-(u.)t )

« Bulk: Prob.[de = g] ~ 1oy h (5557 ) where An(a) = 5k with
b = exp (—[erfc " (2)]?) /V4rD

e Edge: Prob.[dx = g] = n lk) h (ﬁ) where Iy(k) = Fﬁ

The scaling function h(z) =2 [~ due™" z/u (2>0)
= universal (indep. of &)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Full Counting Statistics

p(x,N)

Ni = number of particles in [—L, L]
Clearly, 0 < N, < N

P(N,, N) =?
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p(x,N)

Ni = number of particles in [—L, L]
Clearly, 0 < N, < N

P(N,, N) =?
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Full Counting Statistics

p(x,N)

Ni = number of particles in [—L, L]
Clearly, 0 < N, < N

P(N,, N) =?

Full Counting Statistics: P(N., N) ~ & H (- = k) (0<k<1)

where the scaling function:

H(r) = 7/m [u(m)] > exp [~y u2() + v*(r)]

with v = r [2/(4D) and u(k) = erf (k)
M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Full Counting Statistics

NP(N,.N)

The scaling function H(k)

N =500
N=750 |
N = 1000
—— Theoretical

H(k) — ﬂ8’13 exp[~-%] as kK — 0

k=NJN

Full Counting Statistics: P(N., N) ~ & H (- =k) (0<k<1)

where the scaling function:

with v = r [2/(4D) and u(k) = erf (k)
M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

S.N. Majumdar Correlated Resetting Gas



Generalisations

The structure of the joint distribution for N independent particles driven
by simultaneous resetting is very general:

P () =1 [

J0

N N
dre "] [po(xi, 7)
i=1

where po(x,7) can represent any single particle motion, not necessarily
difusion
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Generalisations

The structure of the joint distribution for N independent particles driven
by simultaneous resetting is very general:

P () =1 [

- N
dre "] [po(xi, 7)
/0 i=1

where po(x,7) can represent any single particle motion, not necessarily
difusion

Ex: ballistic motion, Lévy flights etc.

= a whole class of solvable correlated gases in their
nonequilibrium stationary state

= a new application of stochastic resetting

M. Biroli, H. Larralde, S. M., G. Schehr, arXiv: 2307.15351
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Summary and Conclusions

e A simple solvable model of a correlated gas of N diffusing particles in
their nonequilibrium stationary state driven by simultaneous stochastic
resetting

e Several physical observables are exactly computable and have rich and
interesting behaviors, despite being a strongly correlated system

e Easily generalisable to a whole new class of solvable correlated gases in
their nonequilibrium stationary state — ballistic particles, Lévy flights

e Generalisation to N independent particles in a confining harmonic
potential that swtiches between two stiffnesses 1 and pp with rate r

M. Biroli, M. Kulkarni, S.M., G. Schehr (in preparation)
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Other applications of stochastic resetting

e Unusual temporal relaxation to the stationary state

e Target search with optimal resetting rate

e Enzymatic reactions in biology (Michaelis-Menten reaction)

e Lévy flights, Lévy walks, fractional BM with resetting

e Space-time dependent resetting rate

e Search via nonequilibrium reset dynamics vs. equilibrium dynamics
e Resetting dynamics of extended systems (Ising model, interfaces)
e Memory dependent reset

e First-passage resetting

e Quantum dynamics with reset

e Active particles with reset

e Territory covered by resetting Brownian motions in 2-d

e Resetting Brownian motion with constraints (Br. bridge)

e Cost of resetting

e Stochastic optimal control theory

e Queuing theory ... = along list !
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Other applications of stochastic resetting

e Unusual temporal relaxation to the stationary state

e Target search with optimal resetting rate

e Enzymatic reactions in biology (Michaelis-Menten reaction)

e Lévy flights, Lévy walks, fractional BM with resetting

e Space-time dependent resetting rate

e Search via nonequilibrium reset dynamics vs. equilibrium dynamics
e Resetting dynamics of extended systems (Ising model, interfaces)
e Memory dependent reset

e First-passage resetting

e Quantum dynamics with reset

e Active particles with reset

e Territory covered by resetting Brownian motions in 2-d

e Resetting Brownian motion with constraints (Br. bridge)

e Cost of resetting

e Stochastic optimal control theory

e Queuing theory ... = along list !

Recent reviews on Stochastic Resetting and Applications:
M.R. Evans, S.M., G. Schehr, J. Phys. A. : Math. Theor. 53, 193001 (2020)
A. Pal, S. Kostinki, S. Reuveni, J. Phys. A: Math. Theor. 55, 021001 (2022)
S. Gupta, A.M. Jayannavar, Front. Phys. 10, 789097 (2022)
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Scope

Restart is a simple and natural mechanism that has emerged as an overreaching topic in physics,
chemistry, biology, ecology, engineering and economics. Since the inaugural work of Evans and Majumdar
(Evans M R and Majumdar S N 2011, Phys. Rev. Lett. 106, 160601) a substantial amount of research has
been carried out on stochastic resetting and its applications. This work spans different contexts starting
from first-passage and search theory, stochastic thermodynamics, optimization theory, and all the way to
quantum mechanics. Further connections have been made to animal foraging, protein-DNA interactions,
coagulation-diffusion processes, chemical reaction processes, as well as to stock-market and population
dynamics which display colossal crashes, i.e., resetting events. While most studies to date have been
theoretical, several experimental groups have now entered the playing field, which marks the dawn of a
new era.

The goal of this issue is to report new and original advancements made on stochastic resetting and
applications, to open novel research directions and to attract additional researchers to work in the exciting
field of stochastic resetting.
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Stochastic Resetting — rich and interesting static/dynamic phenomena
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