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! Introductory:  The glass transition and the jamming transition
! The relationship between the glass and jamming transitions 
! The hard sphere glass transition from mean field theory 
! Scaling analysis of dynamics in 3D (soft spheres) to estimate ideal glass 

transition density for hard spheres 
! New (our) scaling analysis of dynamics in 3 – 8 dimensions 
! Comparison with calculation for finite dimensions  
! Summary
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What are glasses?Introduction

The glass and jamming transitions: Two routes to the amorphous solid state. 

Molecular liquids: Glass transition

Granular matter: Jamming transition

Colloidal suspensions: Both phenomena



The glass transition

The glass transition is reached (typically) upon cooling a dense liquid.

Divergence of relaxation times as the glass transition is approached. 

Glass properties depend on the protocol of preparation, such as the cooling rate. 

In the limit of infinitely slow cooling – The ideal glass transition/Kauzmann
temperature (density). 



What are glasses?The jamming transition

The jamming transition observed in assemblies of meso/macroscopic grains. 

The control parameter is the density. 

Rigidity of jammed packings determined by mechanical contacts. 

Divergence of pressure for hard particle packings. 

The hard sphere system has been employed to investigate both transitions. 

Conventionally, sphere packings jam at a packing fraction of ~ 64% -- Random 
Close Packing.  



Robin Speedy Mol Phys 1998

From: Torquato Stillinger RMP 2010

The hard sphere phase diagram
However, several studies discuss the non-uniqueness of the jamming transition. 

Speedy – Falling out of equilibrium at different (glass transition) densities lead 
correspondingly to different jamming densities. 

Torquato & co – Random jammed packing ambiguous. Protocol dependence, 
crystallization etc. 



Hard sphere jamming
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Chaudhuri et al PRL 2010

Chaudhuri, Berthier, Sastry PRL 2010

Demonstration of the non-uniqueness of the jamming density – Chaudhuri et al

Consider ensembles of hard sphere fluid configurations at different starting 
densities. 

Subject to the same jamming protocol. 

Leads to an initial condition dependent jamming density. 

The jamming line. 

Random Close Packing/J point: The lowest jamming density. 



What are glasses?Glass transition and Jamming point

Not everybody agrees(d) – Based on cell/free volume theories, the finite 
dimensional expectation is that the Kauzmann density = (highest) Jamming  density 
~ 64.4%

Not consistent with the mean field theory of the glass transition… 

Kamien and Liu PRL, 2007
Coniglio et. al Soft matter (2017)



What are glasses?Infinite dimensional theory

Charbonneau et. al. Annual Rev. of Cond Matt Phys (2017)
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Berthier et al PNAS 2016

The infinite dimensional theory of the glass transition predicts the presence of a line 
of glass transitions and a corresponding line of jamming points – the J line. 

Supporting evidence that this picture holds for D = 3. 

But no precise identification of the jamming and Kauzmann densities. 

3D



What are glasses?3D Simulations

Using swap MC, pressure can be computed well above φJ. 

No divergence of pressure at φJ. 

Ideal glass transition and jamming densities (RCP) not related.

But no identification of the Kauzmann density in this work..
Berthier et al, PRL 2016



From simulation of soft sphere mixtures across densities, one observes a 
crossover from sub-Arrhenius to super-Arrhenius temperature dependence.

Arrhenius relaxation: τα = exp (A/kBT)

Sub- Arrhenius: τα increases slower than Arrhenius.
Super-Arrhenius: τα increases faster than Arrhenius.

Soft Sphere Simulations: 3D

Low densities: relaxation behavior sub-Arrhenius, High densities: Super-
Arrhenius.

Berthier and Witten, EPL (2009)



Scaling analysis of dynamics

Scaling analysis of dynamics near the crossover between sub-Arrhenius to super 
Arrhenius to identify the ideal glass transition density (Berthier-Witten) in 3D. 

Scaling form obtained based on two considerations:

• Soft spheres at finite temperature treated as having effective diameters:

• The relaxation times for hard spheres obeys

with d = 2. 

Berthier Witten (BW) scaling formula
(Brambilla et al PRL 2009)

Requires
For Arrhenius behavior at φ0



Berthier-Witten scaling 

For suitable choices of the parameters (φ0 , µ, δ) all the data falls on a 
master curves.

Three parameters: φ0,μ, 𝛿

μ = 1.3
𝛿 = 2.2 (not 2) 
φ0 = 0.635

φ0 is very close to φJ (d=3)

Berthier and Witten, PRE (2009)



Limitations

Parameters used to obtain scaling collapse do not lead to an Arrhenius
temperature dependence at φ = φ0

How do you better estimate of φ0?

The same scaling analysis was revisited by Maiti and Schmiedeberg:

Equally good 
scaling collapse 
— completely 
different set of 
parameters.

Maiti and Schmiedeberg, J Phy: 
Cond. Matt (2019)



Our simulation investigation: 
We study binary soft sphere mixtures for 3 – 8 dimensions. 

Our model:

# Bi-disperse mixture: (50:50) σBB = 1.4σAA

# System size: 1000-5000

# density: 12-14 density around φJ in each dimension.

# NVT MD simulations. 

# Integration time step, dt = 0.01

Our Simulation Study
Questions: 

How do the estimates of φ0 and φJ depend on spatial dimensionality? 

Can these densities be determined by a more robust procedure? 

Do the results more convincingly distinguish φ0 and φJ ?

Can we compare our results satisfactorily with attempts to extend the infinite 
dimensional results to finite dimensions?  



Sub Arrhenius to super Arrhenius transition in all D



New Scaling Analysis

• We perform a scaling analysis similar to BW but with a newly proposed scaling
function.

• We obtain the effective diameter of the soft spheres following Barker and
Henderson.

φeff becomes, approximately: 

Our scaling function:

Barker and Henderson, JCP (1967)

Requires d = 2 to obtain Arrhenius behavior at f = f0



Equation of state to estimate b and β
We have four free parameters: b, β, 𝛿 and φ0 !!!!

Rather than analyse dynamical data to estimate all of them, we 
employ the equation of state as the first step. 

We choose b and β from pressure collapse. For a good choice of φeff pressure 
should collapse onto a master curve:



Choice of f and d

𝛿 = 2.0 is well accepted value in literature. (We also have some understanding 
about this number.

Arrhenius fits -- demonstrates that the change from sub-Arrhenius to super-
Arrhenius behavior occurs within the range of densities shown. Use this density 

range for initial guess of φ0



Scaling Collapse of t: All dimensions 

Very satisfactory scaling collapse.



Revisiting Berthier-Witten scaling

We impose: µδ = 2, for Arrhenius behavior at φ = φ0

φ0 values similar to our estimates.



Quality of data collapse: Error analysis

For each subset of data, for each data point, we define an x value and a y value

Minimum error around 𝛿 =2. Fixing 𝛿 =2, we can precisely compute φ0.



φ0: All dimensions

φ0 decreases with increasing dimension.



Jamming point
Protocol: 

• Begin by random configuration of spheres. 

• Apply compression uniformly by inflating the particle diameter, minimize the 
energy at each step of compression

• continue this process until the system reaches the energy of the order of 10−5 .

• Now, decompress the system minimizing energy at each step.

• The volume fraction at which energy becomes 10−16 is the jamming point.

Obtain φJ by 
averaging over a 
large number of 
initial samples



Jamming density: All dimensions  



Glass transition and jamming densities

φJ also decreases as spatial dimension becomes larger.

The ratio φ0/φJ increases with dimension with φ0 > φJ for d > 4.

For d = 3,4, φ0 < φJ, with the two values being very close.



Theoretical results in finite dimension  

Mangeat and Zamponi, Phys Rev E (2016).

Approximation scheme around the infinite dimensional solution – Mangeat and 
Zamponi (PRE 2016). 

Theoretical prediction: 2dφK/d ~ log d , 2dφth/d ~ constant

fth underestimates the jamming density.



Comparison with theoretical results

Although we are not able to verify quantitatively the prediction
that φ0 increases as log d, the values of φ0 are in near quantitative
agreement with theoretical results.



Density-Temperature diagram
we compute the temperature at which the relaxation times diverges by fitting the 
data at each density above φ0 , to the VFT form:

density-temperature diagram shows φ0 and φJ, along with the density dependent TVFT.



Summary
We perform a scaling analysis of the dynamics of soft sphere fluids in 
dimensions 3 to 8.

We propose and employ a new scaling procedure that employs the 
equation of state in addition to dynamical data. 

We estimate the ideal glass transition and jamming densities, and show 
clearly that they are distinct, with a ratio that grows with spatial 
dimensionality. 

The estimated glass transition densities are in near quantitative 
agreement with theoretical calculations. 
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