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Dry active systems
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Inclusion in a dry active system

Equations of motion

ẋi = v0ui − µ∇V (xi)

• v0u self-propulsion force, correlation time τ

• V (x) localized external potential

• no hydrodynamic interactions
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Inclusion in a dry active system

Equations of motion

ẋi = v0ui − µ∇V (xi)

• v0u self-propulsion force, correlation time τ

• V (x) localized external potential

• no hydrodynamic interactions

In equilibrium, Boltzmann distribution

ρ(x) = ρ0 exp(−βV (x))

⇒ local effect of the potential

Non-equilibrium dynamics: universal long-range influence

of a localized object Y. Baek & al. PRL (2018)
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Far-field density decay

D∆ρ+∇ · (ρ∇V ) = −∇ · j

• diffusion on large scales

• interaction with the potential

• j accounts for all complicated near-field effects (unknown)

Far-field solution via a multipole expansion

ρ(x) ≃ −
1

4πD

xα

x3

∫
dx′

(
jα(x′) + ρ(x′)∂αV (x′)

)
= O

(
x−2

)
, universal decay
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Far-field density decay

Consequences

• effective long-range interactions between passive bodies embedded in active systems

• strong influence of bulk and boundary disorder on phase behavior

Open question

• what happens when self-propelled particles move in a fluid and momentum is locally

conserved?

Goal for today

• find the far-field density profile for swimmers in a viscous fluid with a localized obstacle

Challenge

• long-range interactions mediated by the fluid
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Viscous flows



Viscous flows

For microswimmers ⇒ viscous flow

Reynolds =
inertia

viscosity
≪ 1 for instance ∼ 10−5 for E. Coli

Stokesian incompressible fluid

η∇2v−∇P + f(r) = 0

∇ · v = 0

• ∇2v : diffusion of momentum

• f(r) : momentum sources

⇒ local perturbations induce long-range flows
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Fundamental solutions

• Force monopole: f(r) = fδ(r)

η∇2v−∇P + fδ(r) = 0

vα(r) =
1

8πη
Jαβ(r)fβ with Jαβ(r) =

δαβ

r
+

rαrβ

r3
∼

1

r

• Force dipole:

f(r) = fδ(r+ a)− fδ(r) ≃ f (a ·∇δ(r))

⇒ vα(r) ≃
1

8πη
∂µJ

αβ(r)Qµβ ∼
1

r2

with dipole strength Qµβ = aµfβ .
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Inclusion in a momentum conserving
active fluid



Inclusion in a momentum conserving active fluid

• no orentational order in the bulk ⇒ bulk fluid

flow vanishes on average

• no large scale convective transport in the bulk

• large-scale diffusion of swimmers in the bulk

• slowly-decaying average flow far-away from the

obstacle

D∆ρ+∇ · (ρ [v+∇V ]) = −∇ · j
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Inclusion in a momentum conserving active fluid

D∆ρ+∇ · (ρ [v+∇V ]) = −∇ · j

• derive it from a microscopic model of swimmers

• obtain the form of the effective velocity v(r)

• solve this equation in the far-field
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Microscopic model & velocity field



Many-body equations of motion

• active particles (squirmers): spheres with a

given surface flow vs(x)

• inclusion exerts a short range force −∇V (xi)

on each swimmer

• inclusion is an impenetrable object

Fswimmers→inclusion

=
∑

j ∇V (xj)

−∇V (xi)

Stokes equation

η∆v−∇P = 0 , ∇ · v = 0

Boundary conditions on the swimmers

v(x)|i = ẋi + vs,i(x) . Ffluid→swimmer −∇xiV (xi) = 0 .

overdamped equations of motion

No-slip boundary condition on the surface of the obstacle
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Far-field fluid flow

• each swimmer close to the obstacle behaves as a force monopole

Fswimmer→fluid = −∇xiV (xi)

• the obstacle behaves as a force monopole Fobs→fluid

Total force monopole

Fobs→fluid −
∑
i

∇xiV (xi) = − (Ffluid→obs + Fswimmers→obs)

• Freely-moving obstacle: conservation of momentum ⇒ zero monopole

vα(r) ≃
1

8πη
∂γJ

αβ(r)Qγβ
eff ∼

1

r2

• Fixed obstacle: source of momentum ⇒ non-zero monopole

vα(r) ≃
1

8πη
Jαβ(r)

〈
Fβ
ext

〉
∼

1

r

where
〈
Fβ
ext

〉
is the average force exerted by an external observer to keep the obstacle fixed
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Far-field density



Power counting

D∆ρ+∇ · (ρv) = −∇ · j

In the far-field

• localized near-field effects ∇ · j(r) → j ·∇δ(r)

• v(r) → µr−δg(̂r)

• δρ(r) = ρ(r)− ρ0 → 0 at large distances

D∆δρ+ µ∇ ·
(
r−δg(̂r)δρ

)
= −j ·∇δ(r)

Rescaling r → r′ = b−1 r & δρ(r) → δρ′(r′) = b2δρ(r)

D∆′δρ′ + µb1−δ ∇ ·
(
r′−δg(̂r)δρ′

)
= −j ·∇′δ(r′)

Hydrodynamic coupling

• irrelevant for a freely-moving obstacle (δ = 2)

• marginal for a fixed obstacle (δ = 1)
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Freely-moving obstacle

Hydrodynamics irrelevant ⇒ same behavior as in the dry case

δρ(r) ∝
r̂ · j
r2

and J depends on near-field properties

• universal −2 decay

• universal angular dependence

δρ(x, y, z = 1)/ρ0

j

x

y
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Fixed obstacle

Marginal coupling to hydrodynamics ⇒ universal anomalous exponent and modified angular

dependence

• depends on the far-field properties of the flow

vα(r) ≃
1

8πη
Jαβ(r)

〈
Fβ
ext

〉

⇒ two parameters

{
λ = |⟨Fext⟩| / (8πηD)

p = ⟨Fext⟩ / |⟨Fext⟩|

• depends on the symmetry of the obstacle
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Fixed obstacle: decay

For an obstacle with an axis of symmetry (with axis p̂)

δρ(r) ∝
1

r2+ϵ∥
with ϵ∥ =

λ2

3
+O

(
λ4

)

⇒ faster decay than in the freely-moving case

For a less symmetric obstacle

δρ(r) ∝
1

r2+ϵ⊥
with ϵ⊥ = −

λ2

12
+ O

(
λ4

)

⇒ slower decay than in the freely-moving case
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Fixed obstacle: angular dependence

For an obstacle with an axis of symmetry (with axis p̂) ⇒ angle θ (cos θ = r̂ · p̂)

δρ(r) ∝
1

r2+ϵ∥
g∥ (θ)

with

g∥ (θ) = cos θ +
λ

4

(
3− 5 cos2 θ

)
+

3

4
λ2 cos3 θ +O

(
λ3

)

δρ(x, y, z = 1)/ρ0

j

x

y

Freely moving

δρ(x, y, z = 1)/ρ0

p

x

y

Fixed, symmetric
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Fixed obstacle: angular dependence

For an obstacle with no axis of symmetry ⇒ polar angle θ (cos θ = r̂ · p̂) and azimutal angle ϕ

δρ(r) ∝
1

r2+ϵ⊥
g⊥ (θ, ϕ)

with

g⊥ (θ, ϕ) = cos(ϕ+ϕ0) sin(θ)

(
1−

5λ

4
cos θ +

3

4
λ2 cos3 θ

)
+O

(
λ3

)

and ϕ0 is a non-universal phase.
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Conclusion

• long-range influence of an inclusion on a momentum conserving active fluid

• long-range velocity flow

• long-range density field

• decay exponent and angular dependence as a function of simple properties of the object

• interactions between passive bodies?

• influence of disorder on the bulk behavior of the system?

Thank you!
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