Activities

Higher dimensional quantum systems have a very important role to play in quantum information, computation as well as communication. In photonic systems, it is common to use the photon's polarization degree of freedom for various investigations. However, this restricts us to only two orthogonal states, hence qubits for manipulation. In a recent paper, we have theoretically analysed and experimentally demonstrated a system of two photonic qutrits which are correlated in the spatial degree of freedom. The qutrits have been generated by modulating the pump beam in a spontaneous parametric down conversion process using an aperture based system. In principle, this system can be scaled up to generation of even higher dimensional correlated qudits with possible application for quantum communication and computation implementations. Quantification of the spatial correlations between a pair of qutrits can in principle also have applications in long distance quantum communication whereby now we can explore a different degree of freedom i.e. spatial compared to the more conventional polarization degree of freedom.

Publications