Pulsar image
Title fig
Astrosat image
side blank Side pulsar Side timing Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5 Exercise 6 Exercise 7 Exercise 8 Exercise 9 Side timing Exercise 1 Exercise 2 Exercise 3 Exercise 4 blank Exercises main page side blank Side pulsar

Spectral Analysis: Exercise 4

Cyclotron absorption line in Hercules X-1

In this exercise the approach will be to take note of more subtle aspects of the spectra and define the model components accordingly. The source is Hercules X-1 , observed by the Phoswich Detector System aboard the European X-ray satellite BeppoSax. Lets start the process.
Copy required files, herx-1_pds.pha , pds_256.rmf and invoke xspec
pulsar>xspec
XSPEC>cpd /xw
XSPEC>setp e
XSPEC>da pds_nobins.pha 
 Net count rate (cts/s) for file   1   36.77    +/-  3.9759E-02
   using response (RMF) file...       pds_256.rmf
   1 data set is in use
XSPEC>pl ld

spectra of Hercules X-1

Ignore the obvious bad data above 100 keV.

XSPEC>ig 100.-**
Note the energy range (of the PDS) in which we are working for this  source. The energy range is very important for deciding the model components, for all physical processes which are applicable for a data set are decided by the energy range of the data, and vice versa. The absorption due to the effective hydrogen column is negligible above 10.0 keV, hence we will start with only powerlaw to fit the data.
XSPEC>mo power
  Model:  powerlaw[1]
Input parameter value, delta, min, bot, top, and max values for ...
Current:           1      0.01        -3        -2         9        10
powerlaw:PhoIndex>1.5
Current:           1      0.01         0         0     1E+24     1E+24
powerlaw:norm>0.6
..
XSPEC>fit
..
..
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
  Model:  powerlaw[1]
  Model Fit Model Component  Parameter  Unit     Value
  par   par comp
    1    1    1   powerlaw   PhoIndex            2.687     +/-  0.2232E-02
    2    2    1   powerlaw   norm                11.04     +/-  0.7228E-01
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
 Chi-Squared =      161929.0     using    78 PHA bins.
 Reduced chi-squared =      2130.645     for     76 degrees of freedom
 Null hypothesis probability =  0.00
Well, the fit appears to be quite hopeless. See the spectra and residual.
XSPEC>pl ld chi

spectra of Hercules X-1

Well, at first glance the best fit doesn't look so optimistic, but if you look closely you'll realise that if the powerlaw index is harder (~1.5) and assume there is an exponential cutoff at around 25-30 keV, the fit will definitely improve. So effectively we should be fitting a cutoff-powerlaw model.

XSPEC>addcomp 2 highecut
Input parameter value, delta, min, bot, top, and max values for ...
Current:          10      0.01     1E-04      0.01     1E+06     1E+06
highecut:cutoffE>25.0
Current:          15      0.01     1E-04      0.01     1E+06     1E+06
highecut:foldE>15.0
..
XSPEC>fit
..
..
..
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
  Model:  ( powerlaw[1] )highecut[2]
  Model Fit Model Component  Parameter  Unit     Value
  par   par comp
    1    1    1   powerlaw   PhoIndex           0.9346     +/-  0.8624E-02
    2    2    1   powerlaw   norm               8.1404E-02 +/-  0.1935E-02
    3    3    2   highecut   cutoffE  keV        22.51     +/-  0.4029E-01
    4    4    2   highecut   foldE    keV        8.494     +/-  0.2794E-01
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
 Chi-Squared =      3298.195     using    78 PHA bins.
 Reduced chi-squared =      44.57020     for     74 degrees of freedom
 Null hypothesis probability =  0.00
The best fit statistics is still very poor, lets examine the spectra again.
XSPEC>pl ld chi

spectra of Hercules X-1

Two main things are there to be noticed, firstly, the residual below 15 keV is very large, we will deal with this problem later. Secondly, from the shape of the spectra and the best fit model above ~25 keV, one can realise that if the powerlaw index beomes softer with higher normalization than the presnt value (i.e. ~1.5) and if we introduce an absorption line around 35 keV then the fit will improve. The best candidate for the absorption is the cyclotron absorption line, becasue of the extremely high magnetic field present in a pulsar.

XSPEC>addcomp 3 cycl
Input parameter value, delta, min, bot, top, and max values for ...
Current:           2      0.01         0         0       100       100
cyclabs:Depth0>
Current:          30      0.01         1         1       100       100
cyclabs:E0>
Current:          10     -0.01         1         1       100       100
cyclabs:Width0>
Current:           0     -0.01         0         0       100       100
cyclabs:Depth2>
Current:          20     -0.01         1         1       100       100
cyclabs:Width2>
..
XSPEC>fit
..
..
You will get the best fit statistics something like this
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
  Model:  ( powerlaw[1] )highecut[2]*cyclabs[3]
  Model Fit Model Component  Parameter  Unit     Value
  par   par comp
    1    1    1   powerlaw   PhoIndex            1.148     +/-  0.1344E-01
    2    2    1   powerlaw   norm               0.1586     +/-  0.6022E-02
    3    3    2   highecut   cutoffE  keV        23.53     +/-  0.9010E-01
    4    4    2   highecut   foldE    keV        13.23     +/-  0.1099
    5    5    3   cyclabs    Depth0             0.8494     +/-  0.1634E-01
    6    6    3   cyclabs    E0       keV        38.39     +/-  0.1293
    7    7    3   cyclabs    Width0   keV        10.00     frozen
    8    8    3   cyclabs    Depth2              0.000     frozen
    9    9    3   cyclabs    Width2   keV        20.00     frozen
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
 Chi-Squared =      246.5020     using    75 PHA bins.
 Reduced chi-squared =      3.572492     for     69 degrees of freedom
 Null hypothesis probability = 8.860E-22
The fit has improved considerably, but is not yet acceptable. Again look closely at the sepctra and best fit model and the residual.
XSPEC>pl ld chi

spectra of Hercules X-1

Well, we have no other choice but to exclude the poor quality data below 20 keV, the maximum contribution to the chi-square is coming from those energy channels.

XSPEC>ig **-20.0
..
XSPEC>fit
..
..
..
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
  Model:  ( powerlaw[1] )highecut[2]*cyclabs[3]
  Model Fit Model Component  Parameter  Unit     Value
  par   par comp
    1    1    1   powerlaw   PhoIndex            1.602     +/-  0.7130E-01
    2    2    1   powerlaw   norm               0.6264     +/-  0.1329
    3    3    2   highecut   cutoffE  keV        25.40     +/-  0.2601
    4    4    2   highecut   foldE    keV        14.86     +/-  0.3285
    5    5    3   cyclabs    Depth0             0.7935     +/-  0.1704E-01
    6    6    3   cyclabs    E0       keV        37.80     +/-  0.1692
    7    7    3   cyclabs    Width0   keV        10.00     frozen
    8    8    3   cyclabs    Depth2              0.000     frozen
    9    9    3   cyclabs    Width2   keV        20.00     frozen
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
 Chi-Squared =      111.5360     using    70 PHA bins.
 Reduced chi-squared =      1.742750     for     64 degrees of freedom
 Null hypothesis probability = 2.173E-04
Now thaw the paramter cyclotron absorption width, even though it may not affect the best fit statistics much, it will definitely give better acceptable value of other best fit parameters.
XSPEC>thaw 7
XSPEC>fit
..
..
..
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
  Model:  ( powerlaw[1] )highecut[2]*cyclabs[3]
  Model Fit Model Component  Parameter  Unit     Value
  par   par comp
    1    1    1   powerlaw   PhoIndex            1.607     +/-  0.6692E-01
    2    2    1   powerlaw   norm               0.6467     +/-  0.1247
    3    3    2   highecut   cutoffE  keV        25.82     +/-  0.3008
    4    4    2   highecut   foldE    keV        14.99     +/-  0.2772
    5    5    3   cyclabs    Depth0             0.8189     +/-  0.3025E-01
    6    6    3   cyclabs    E0       keV        37.45     +/-  0.3110
    7    7    3   cyclabs    Width0   keV        10.88     +/-  0.7241
    8    8    3   cyclabs    Depth2              0.000     frozen
    9    9    3   cyclabs    Width2   keV        20.00     frozen
  ---------------------------------------------------------------------------
  ---------------------------------------------------------------------------
 Chi-Squared =      109.1144     using    70 PHA bins.
 Reduced chi-squared =      1.731975     for     63 degrees of freedom
 Null hypothesis probability = 2.811E-04
Look at the sepctra and the residual.
XSPEC>pl

spectra of Hercules X-1

The fit may not look to be as good as the ones in our previous exercises, but still it is definitely acceptable for at least qualitative discusion and convincing evidence for the presence of the cyclotron absorption line. Look at the unfolded spectra to acknowledge the convincing presence of the cyclotron absorption line.

Detection of this cyclotron absorption feature in the spectrum allows you to estimate the
magnetic field strength of the neutron star. This is the only direct way of measuring magnetic
field strength of a neutron star.

  
XSPEC>pl uf

spectra of Hercules X-1

So, here ends the exercise in which we had to observe the shape of the spectra to decide on the course of action while fitting the model. Here we have covered most of the basic aspects of the spectral fitting of X-ray data using xspec.
 
 
 






This workshop is being organized by Department of Astronomy & Astrophysics, Tata Institute of Fundamental Research (TIFR) and is sponsored by Indian Space Research Organization  (ISRO).