Pulsar image
Title fig
Astrosat image
side blank Side pulsar Side timing Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5 Exercise 6 Exercise 7 Exercise 8 Exercise 9 Side timing Exercise 1 Exercise 2 Exercise 3 Exercise 4 blank Exercises main page side blank Side pulsar

Timing Analysis: Exercise 8

kHz QPO in X-ray Pulsars

In the previous exercise we searched for the quasi periodic oscillations in an X-ray pulsar. Here we will analyse again the RXTE PCA light curve of a low mass X-ray binary called 4U 1728-34 to search for the kHz QPOs means QPO near the frequencies of few hundred Hz.

Before starting the kHz QPO search let us have a look at the light curve 4U_1728-34_pca.lc using lcurve .  It shows a constant count rate for most of the time and a huge X-ray burst near the end of the light curve. This type of burst is known as type-1 X-ray burst. We will search for kHz QPO using a vary high time resolution light curve made from a small portion of this observation where the count rate is nearly constant.

First copy  the light curve 4U_1728-34_pca1.lc . This light curve  has time resolution of 125 microsecond, which allows us to create power density spectrum upto 4 kHz.

In the next problem, we will take a high time resolution light curve of the decaying part of the burst. We will  be able to detect coherent high frequency pulsations during the type I burst decay.

The time resolution in these two light curves is 125 microsecond, which allows us to create power density spectrum upto 4 kHz.

As usual invoke the powspec task from the command line.

pulsar> powspec

powspec 1.0 (xronos5.18)

Ser. 1 filename +options (or @file of filenames +options)[file1] 4U_1728-34_pca1.lc
 Series 1 file   1:4U_1728-34_pca1.lc

 Selected FITS extensions: 1 - RATE TABLE;

Source ............ 1728-34             Start Time (d) .... 10129 09:34:43.562
FITS Extension ....  1 - `RATE      `   Stop Time (d) ..... 10129 09:43:03.563
No. of Rows .......      3992001        Bin Time (s) ......   0.1250E-03
Right Ascension ... 2.62989197E+02      Internal time sys.. Converted to TJD
Declination ....... -3.38345985E+01     Experiment ........ XTE      PCA

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes

 Selected Columns:  1- Time;  2- Y-axis;  3- Y-error;  4- Fractional exposure;

 File contains binned data.

Name of the window file ('-' for default window)[-]-

Expected Start ... 10129.39911530592  (days)       9:34:43:562  (h:m:s:ms)
Expected Stop .... 10129.40490234441  (days)       9:43: 3:563  (h:m:s:ms)

 **** Warning: Newbin Time must be an integer multiple of Minimum Newbin Time
Minimum Newbin Time   0.12500000E-03  (s)
for Maximum Newbin No..          4000002

Default Newbin Time is:  0.61125000E-01(s) (to have 1 Intv. of    8192 Newbins)
Type INDEF to accept the default value

Newbin Time or negative rebinning[0.125] 0.000125

Newbin Time ......    0.12500000E-03  (s)
Maximum Newbin No.           4000002

Default Newbins per Interval are:        8192
(giving     489 Intervals of         8192 Newbins each)
Type INDEF to accept the default value

Number of Newbins/Interval[8192] 1024
 Maximum of    3907 Intvs. with         1024 Newbins of      0.125000E-03 (s)
Default intervals per frame are:      3907
Type INDEF to accept the default value
Number of Intervals/Frame[4] 3907
 Results from up to    3907 Intvs. will be averaged in a Frame
Rebin results? (>1 const rebin, <-1 geom. rebin, 0 none)[-1.05] -1.01
Results will be rebinned geometrically  with a series of step    1.01
Name of output file[default]
Do you want to plot your results?[yes]
Enter PGPLOT device[/XW]
The input parameters are similar to that explained in the previous exercises.

At this point be patience and wait for some time.

Here the number of intervals per frame is very large (3907) which means that the analysis will be carried out in 3907 different independent segments of the light curve. So it will take bit longer time to complete the analysis and produce the final power density spectrum. You may enjoy a cup of tea as the computer does the number crunching.

     
       512 analysis results per intv. will be rebinned to     196
 Intv    1   Start 10129  9:34:43
    Ser.1     Avg  1976.        Chisq  947.9       Var 0.1530E+08 Newbs.   1024
               Min  0.000          Max 0.2458E+05expVar 0.1606E+08  Bins   1024
Power spectrum ready !
 Intv    2   Start 10129  9:34:43
     Ser.1     Avg  2120.        Chisq  924.4       Var 0.1589E+08 Newbs.   1024
               Min  0.000          Max 0.2458E+05expVar 0.1720E+08  Bins   1024
Power spectrum ready !
 Intv    3   Start 10129  9:34:43
     Ser.1     Avg  1992.        Chisq  985.8       Var 0.1530E+08 Newbs.   1024
               Min  0.000          Max 0.1638E+05expVar 0.1606E+08  Bins   1024
Power spectrum ready !
Intv    4   Start 10129  9:34:43
     Ser.1     Avg  2016.        Chisq  1002.       Var 0.1612E+08 Newbs.   1024
               Min  0.000          Max 0.2458E+05expVar 0.1629E+08  Bins   1024
Power spectrum ready !

Here we have shown only 4 intervals but actually there will be 3907 such intervals and then finally you should get your power density spectrum as shown below.

You can resize the spectrum using the PLT commands. The spectrum below is already resized. Give following command at PLT prompt to obtain the plot shown below. For better view rescale y-axis using the commamd given below.
 

PLT> r y 1.8 2.5
PLT> quit

kHz QPO in 4U 1728-34

In the above power density spectrum you can see a peak near frequency of about 800 Hz. As mentioned above this peak suggest the presence of kHz QPOs in the source 4U 1728-34. You can resize the plot using PLT command and find out the accurate frequency for the QPO.






This workshop is being organized by Department of Astronomy & Astrophysics, Tata Institute of Fundamental Research (TIFR) and is sponsored by Indian Space Research Organization  (ISRO).